Journal of Inorganic and General Chemistry
SHORT COMMUNICATION
Zeitschrift für anorganische und allgemeine Chemie
[5] M. McGraw, E. Y.-X. Chen, ACS Catal. 2018, 8, 9877–9887.
C35H53AlN2: calcd. C, 79.50; H, 10.10; N, 5.30%; found: C, 79.39;
[6] Y.-B. Jia, Y.-B. Wang, W.-M. Ren, T. Xu, J. Wang, X.-B. Lu, Mac-
romolecules 2014, 47,1966–1972.
[7] Y. Zhang, G. M. Miyake, E. Y.-X. Chen, Angew. Chem. Int. Ed.
2010, 49, 10158–10162.
[8] a) X.-W. Li, J. Su, G. Robinson, Chem. Commun. 1996, 2683–2684;
b) A. D. K. Todd, W. L. McClennan, J. D. Masuda, RSC Adv. 2016,
6, 69270–69276.
[9] For full crystallographic details and copies of the NMR and GPC
data for this study, see the Supporting Information.
[10] a) C. Hering-Junghans, P. Andreiuk, M. J. Ferguson, R. McDonald,
E. Rivard, Angew. Chem. Int. Ed. 2017, 56, 6272–6275; b) M. Lui,
C. Merten, M. J. Ferguson, R. McDonald, Y. Xu, E. Rivard, Inorg.
Chem. 2015, 54, 2040–2049; for a review on NHI complexes, see:
c) T. Ochiai, D. Franz, S. Inoue, Chem. Soc. Rev. 2016, 45, 6327–
6344.
H, 9.91; N, 5.12%. Mp (°C): 218 (dec).
Polymerization of Michael-type Monomers (General Procedure):
MeIPrCH2·AlMe3 (0.025 g, 0.050 mmol) was added to a solution of
monomer (10 mmol) in 5 mL of THF. After 1 h of stirring the reaction
mixture was quenched with ca. 0.5 mL of ethanol, and the volatiles were
removed in vacuo. The resulting solid was dissolved in ca. 5 mL of
dichloromethane and precipitated into 100 mL of pentane at –30 °C. The
resulting polymer was dried under high vacuum while heated at 50 °C.
Supporting Information (see footnote on the first page of this article):
NMR spectra of NHO-AlR3 complexes and AlR3 starting materials, mo-
lecular structure of 2, full X-ray crystallographic details, and GPC traces
of p2VP, pMA, and pDMAA.
[11] G. Schnee, A. Bolley, F. Hild, D. Specklin, S. Dagorne, Catal. To-
day 2017, 289, 204–210.
[12] I. C. Watson, A. Schumann, H. Yu, E. C. Davy, R. McDonald, M. J.
Ferguson, C. Hering-Junghans, E. Rivard, Chem. Eur. J. 2019, 25,
9678–9690.
Acknowledgements
This work was supported by the Canadian Foundation for Innovation,
the Faculty of Science at the University of Alberta, and the Natural Sci-
ences and Engineering Research Council (NSERC) of Canada (Discov-
ery and Accelerator Supplement grants to E.R.; CREATE fellowship to
I.W.). B.R. and E.R. acknowledge funding from DFG IRTG (2022) and
NSERC CREATE (CREATE 4639900–2015) program for the Alberta/
TU München International Graduate School. I.W. thanks B.R. for host-
ing him as a researcher at TUM. I.W. thanks Bruno Luppi for his assist-
ance with GPC measurements and plots. I.W. thanks Alvaro Omaña Mo-
reno for assistance with GPC measurements. E.R. is also grateful to the
Alexander von Humboldt Foundation for support, and to Prof. Dr.
Manfred Scheer for his friendship and hospitality during E.R.’s excellent
stays in Regensburg.
[13] Variable temperature 1H NMR analysis of 1:1 mixtures of
MeIPrCH2/AlMe3, MeIPrCH2/AlEt3, and MeIPrCH2CHCH2/AlMe3
in [D8]toluene were conducted in the temperature range of –60 to
+80 °C. None of these Lewis pair adducts (1–3) showed any evi-
dence of separating into their respective free Lewis acid and base.
See Figures S18, S19, and S20 (Supporting Information) for the
spectra.
[14] M. Weger, R. K. Grötsch, M. G. Knaus, M. M. Giuman, D. C.
Mayer, P. J. Altmann, E. Mossou, B. Dittrich, A. Pöthig, B. Rieger,
Angew. Chem. Int. Ed. 2019, 58, 9797–9801.
[15] a) Z. Zhao, Q. Wang, J. He, Y. Zhang, Polym. Chem. 2019, 10,
4328–4335; b) T. Xu, E. Y.-X. Chen, J. Am. Chem. Soc. 2014, 136,
1774–1777.
[16] Q. Wang, W. Zhao, S. Zhang, J. He, Y. Zhang, E. Y.-X. Chen, ACS
Catal. 2018, 8, 3571–3578.
[17] For the polymerization of DEVP, see: M. Weger, P. Pahl, F.
Schmidt, B. S. Soller, P. J. Altmann, A. Pöthig, G. Gemmecker, W.
Eisenreich, B. Rieger, Macromolecules 2019, 52, 7073–7080 and
references cited therein.
Keywords: N-Heterocyclic olefins; Aluminum; Polymeriza-
tion; Michael-type monomers; Frustrated Lewis pairs
[18] J. He, Y. Zhang, E. Y.-X. Chen, Synlett 2014, 25, 1534–1538.
[19] K. Takada, K. Fuchise, Y. Chen, T. Satoh, T. Kakuchi, J. Polym. Sci.
Part A: Polym. Chem. 2012, 50, 3560–3566.
References
[1] a) N. Kuhn, H. Bohnen, J. Kreutzberg, D. Bläser, R. Boese, J. Chem.
Soc., Chem. Commun. 1993, 1136–1137; b) N. Kuhn, H. Bohnen,
D. Bläser, R. Boese, Chem. Ber. 1994, 127, 1405–1407.
[20] a) R. Goseki, T. Ishizone, in: Encyclopedia of Polymeric Nanomat-
erials (Eds.: S. Kobayashi, K. Müllen), Springer, Heidelberg, 2015,
p. 1703; b) J. G. Kennemur, Macromolecules 2019, 52, 1354–1370;
c) A. Rudin, P. Choi, The Element of Polymer Science & Engineer-
ing, 3rd ed., Academic Press, Waltham, MA, USA, 2013, p. 380.
[21] For work on complexes with anionic NHO ligands, see: a) S. M. I.
Al-Rafia, M. J. Ferguson, E. Rivard, Inorg. Chem. 2011, 50, 10543–
10545; b) R. S. Ghadwal, S. O. Reichmann, F. Engelhardt, D. M.
Andrada, G. Frenking, Chem. Commun. 2013, 49, 9440–9442; c)
N. R. Paisley, M. W. Lui, R. McDonald, M. J. Ferguson, E. Rivard,
Dalton Trans. 2016, 45, 9860–9870; d) C. C. Chong, B. Rao, R.
Ganguly, Y. Li, R. Kinjo, Inorg. Chem. 2017, 56, 8608–8614; e)
M. M. D. Roy, M. J. Ferguson, R. McDonald, Y. Zhou, E. Rivard,
Chem. Sci. 2019, 10, 6476–6481; f) M. K. Sharma, S. Blomeyer, B.
Neumann, H.-G. Stammler, M. van Gastel, A. Hinz, R. S. Ghadwal,
Angew. Chem. Int. Ed. 2019, 58, 17599–17603; g) E. Hupf, F. Kai-
ser, P. A. Lummis, M. M. D. Roy, R. McDonald, M. J. Ferguson,
F. Kühn, E. Rivard, Inorg. Chem. 2020, 59, 1592–1601; h) M. K.
Sharma, B. Neumann, H.-G. Stammler, D. M. Andrada, R. S.
Ghadwal, Chem. Commun. 2019, 55, 14669–14672.
[2] a) M. M. D. Roy, E. Rivard, Acc. Chem. Res. 2017, 50, 2017–2025;
b) S. M. I. Al-Rafia, A. C. Malcolm, S. K. Liew, M. J. Ferguson, R.
McDonald, E. Rivard, Chem. Commun. 2011, 47, 6987–6989; c)
Y. W. Wang, M. Y. Abraham, R. J. Gilliard Jr., D. R. Sexton, P. Wei,
G. H. Robinson, Organometallics 2013, 32, 6639–6642; d) S. M. I.
Al-Rafia, M. R. Momeni, M. J. Ferguson, R. McDonald, A. Brown,
E. Rivard, Organometallics 2013, 32, 6658–6665; e) R. S. Ghad-
wal, C. J. Schürmann, D. M. Andrada, G. Frenking, Dalton Trans.
2015, 44, 14359–14367; f) R. S. Ghadwal, Dalton Trans. 2016, 45,
16081–16095; g) W.-H. Lee, Y.-F. Lin, G.-H. Lee, S.-M. Peng, C.-
W. Chiu, Dalton Trans. 2016, 45, 5937–5940; h) L. Y. M. Eymann,
P. Varava, A. M. Shved, B. F. E. Curchod, Y. Liu, O. M. Planes, A.
Sienkiewicz, R. Scopelliti, F. F. Tirani, K. Severin, J. Am. Chem.
Soc. 2019, 141, 17112–17116.
[3] K. Powers, C. Hering-Junghans, R. McDonald, M. J. Ferguson, E.
Rivard, Polyhedron 2016, 108, 8–14.
[4] For selected reviews and articles, see: a) S. Naumann, Chem. Com-
mun. 2019, 55, 11658–11670; b) R. D. Crocker, T. V. Nguyen,
Chem. Eur. J. 2016, 22, 2208–2213; c) S. Naumann, K. Mund-
singer, L. Cavallo, L. Falivene, Polym. Chem. 2017, 8, 5803–
5812; d) C. Hering-Junghans, I. C. Watson, M. J. Ferguson,
R. McDonald, E. Rivard, Dalton Trans. 2017, 46, 7150–7153; e) P.
Walther, A. Krauß, S. Naumann, Angew. Chem. Int. Ed. 2019, 58,
10737–10741.
[22] G. M. Sheldrick, Acta Crystallogr., Sect. A 2015, 71, 3– 8.
[23] G. M. Sheldrick, Acta Crystallogr., Sect. C 2015, 71, 3– 8.
Received: December 11, 2019
Published Online:
Z. Anorg. Allg. Chem. 2020, 1–6
5
© 2020 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim