Paper
RSC Advances
focus of many studies addressing fundamental biological
questions as well as its virulence potential. The strains from
Acinetobacter genus could degrade various kinds of pollutants,
including furthermore, SL3 was indigenous microorganisms
isolated from the MTBE-contaminated environment without
recombinant modication. Based of all, though the bio-
augmentation by strain SL3 will potentially increase its pres-
ence in natural environment, this increasing of indigenous wild
7 M. Morales, V. Nava, E. Velasquez, E. Razo-Flores and
S. Revah, Biodegradation, 2009, 20, 271.
8 S. R. Kane, A. Y. Chakicherla, P. S. Chain, R. Schmidt,
M. W. Shin, T. C. Legler, K. M. Scow, F. W. Larimer,
S. M. Lucas, P. M. Richardson and K. R. Hristova, J.
Bacteriol., 2007, 189, 1931.
9 M. Rosell, D. Barcelo, T. Rohwerder, U. Breuer, M. Gehre and
H. H. Richnow, Environ. Sci. Technol., 2007, 41, 2036.
SL3 strain may cause little effect on the microbial community. 10 S. H. Streger, S. Vainberg, H. Dong and P. B. Hatzinger, Appl.
Environ. Microbiol., 2002, 68, 5571.
11 M. Salazar, M. Morales and S. Revah, J. Environ. Sci. Health,
4. Conclusions
Part A: Toxic/Hazard. Subst. Environ. Eng., 2012, 47, 1017.
MTBE is one of the most common contaminants in gasoline- 12 R. J. Steffan, S. Vainberg, C. W. Condee, K. McClay and
polluted soil or groundwater and is oen accompanied by
other gasoline components, such as alkanes. Alkanes have been
P. B. Hatzinger, Biotreatment of MTBE with a new bacterial
isolate, Battelle press, Columbus, Ohio, USA, 2000.
shown to act as growth substrates for microorganisms capable 13 A. J. House and M. R. Hyman, Biodegradation, 2010, 21, 525.
of co-metabolically degrading MTBE. It is necessary therefore to 14 C. A. Smith, K. T. O'Reilly and M. R. Hyman, Appl. Environ.
investigate the development of methods to efficiently eliminate
MTBE contamination from the environment.
Microbiol., 2003, 69, 7385.
15 C. W. Lin and C. Y. Lin, Int. Biodeterior. Biodegrad., 2007, 59,
The results of this study indicate that a single strain of Aci-
97.
netobacter sp. SL3, possesses the ability to degrade MTBE co- 16 S. S. Li, S. Wang and W. Yan, Int. J. Environ. Res. Public
metabolically when grown on n-alkane (C5–C8) substrates. The Health, 2016, 13.
MTBE degradation rate of SL3 varied according to the carbon 17 C. A. Smith and M. R. Hyman, Appl. Environ. Microbiol., 2004,
number of the n-alkane growth substrate. Acinetobacter sp. SL3 70, 4544.
is able to co-metabolically degrade MTBE and its intermediate 18 C. Malandain, F. Fayolle-Guichard and T. M. Vogel, FEMS
TBA continuously, with no obvious reduction in degradation
Microbiol. Ecol., 2010, 72, 289.
rate aer nine rounds of n-octane replenishment. The results of 19 S. Chauvaux, F. Chevalier, C. Le Dantec, F. Fayolle, I. Miras,
this paper reveal the useful properties of Acinetobacter sp. SL3 F. Kunst and P. Beguin, J. Bacteriol., 2001, 183, 6551.
for the bioremediation of MTBE via co-metabolism and provide 20 E. L. Johnson and M. R. Hyman, Appl. Environ. Microbiol.,
a reference for the development of new MTBE elimination
technologies.
2006, 72, 950.
21 S. Li, D. Li and W. Yan, Environ. Sci. Pollut. Res. Int., 2015, 22,
10196.
22 S. Li, K. Qian, S. Wang, K. Liang and W. Yan, Int. J. Environ.
Res. Public Health, 2017, 14.
Funding
This work was supported by National Natural Science Founda- 23 S. Kumar, M. Nei, J. Dudley and K. Tamura, Briengs Bioinf.,
tion of China (Grant number 31670512), and Natural Science 2008, 9, 299.
Basic Research Plan in Shaanxi Province of China (Grant 24 M. A. Larkin, G. Blackshields, N. P. Brown, R. Chenna,
number 2018JM3039).
P. A. McGettigan, H. McWilliam, F. Valentin, I. M. Wallace,
A. Wilm, R. Lopez, J. D. Thompson, T. J. Gibson and
D. G. Higgins, Bioinformatics, 2007, 23, 2947.
Conflicts of interest
25 T. Adekambi, M. Drancourt and D. Raoult, Trends Microbiol.,
2009, 17, 37.
The authors declare that they have no conict of interest.
26 X. Wang, J. Li, X. Cao, W. Wang and Y. Luo, Antonie van
Leeuwenhoek, 2019, DOI: 10.1007/s10482-019-01312-5.
27 J. E. Kostka, O. Prakash, W. A. Overholt, S. J. Green, G. Freyer,
A. Canion, J. Delgardio, N. Norton, T. C. Hazen and
M. Huettel, Appl. Environ. Microbiol., 2011, 77, 7962.
References
1 N. H. Tran, T. Urase, H. H. Ngo, J. Y. Hu and S. L. Ong,
Bioresour. Technol., 2013, 146, 721.
2 E. Fernando, T. Keshavarz and G. Kyazze, Int. Biodeterior. 28 M. Mahjoubi, A. Jaouani, A. Guesmi, S. Ben Amor, A. Jouini,
Biodegrad., 2012, 72, 1.
3 Z. Khan, K. Jain, A. Soni and D. Madamwar, Int. Biodeterior.
Biodegrad., 2014, 94, 167.
4 G. Baggi, S. Bernasconi, M. Zangrossi, L. Cavalca and
V. Andreoni, Int. Biodeterior. Biodegrad., 2008, 62, 57.
5 R. Johnson, J. Pankow, D. Bender, C. Price and J. Zogorski,
Environ. Sci. Technol., 2000, 34, 210A.
6 I. M. Guisado, J. Purswani, J. Gonzalez-Lopez and C. Pozo,
Int. Biodeterior. Biodegrad., 2014, 97, 67.
H. Cherif, A. Najjari, A. Boudabous, N. Koubaa and A. Cherif,
New Biotechnol., 2013, 30, 723.
29 V. de Berardinis, M. Durot, J. Weissenbach and
M. Salanoubat, Curr. Opin. Microbiol., 2009, 12, 568.
30 J. Jung and W. Park, Appl. Microbiol. Biotechnol., 2015, 99,
2533.
31 J. de Vries and W. Wackernagel, Proc. Natl. Acad. Sci. U. S. A.,
2002, 99, 2094.
This journal is © The Royal Society of Chemistry 2019
RSC Adv., 2019, 9, 38962–38972 | 38971