Z. M. A. Judeh et al. / Tetrahedron Letters 43 (2002) 5089–5091
5091
In conclusion we have demonstrated that Bischler–
Napieralski cyclization of phenethylamine derivatives
to the corresponding isoquinoline derivatives can be
12. Shamma, M. The Isoquinoline Alkaloids. Chemistry and
Pharmacology; Academic Press: New York, 1972.
13. (a) Whaley, W. M.; Govindachari, T. R. Org. React.
1951, 6, 74; (b) Bischler, A.; Napieralski, B. Chem. Ber.
1893, 1903; (c) Gerhard, B.; Matthias, W.; Ross, K. T.;
Micheal, R. B.; Robert, J. G.; Ronald, K. Tetrahedron
1999, 55, 1731.
achieved effectively using [bmim]PF 1 to give higher
6
yields and cleaner products in a shorter reaction time
than otherwise achieved under the typical conditions
employed for the Bischler–Napieralski cyclization.
14. (a) Whaley, W. M.; Govindachari, T. R. Org. React.
1951, 6, 151; (b) Czerwinski, K. M.; Cook, J. M. Adv.
Heterocycl. Nat. Prod. Synth. 1996, 3, 217.
Acknowledgements
1
5. (a) Sotomayer, N.; Dominguez, E.; Lete, E. J. Org.
Chem. 1996, 61, 4062; (b) Heaney, H.; Shuhaibar, K. F.;
Slawin, A. M. Z. Tetrahedron Lett. 1996, 37, 4275; (c)
Banwell, M. G.; Bissett, B. D.; Busato, S.; Cowden, C. J.;
Hockless, D. C. R.; Holman, J. W.; Read, R. W.; Wu, A.
W. J. Chem. Soc., Chem. Commun. 1995, 255; (d)
Siegfried, M.-A.; Hilpert, H.; Rey, M.; Dreiding, A. S.
Helv. Chim. Acta 1980, 63, 938.
We would like to thank the National University of
Singapore (NUS) and the Agency for Science, Technol-
ogy and Research (A*STAR) for financial support. We
also would like to thank Roger Read for helpful
discussions.
1
1
6. Judeh, Z. M. A. Ph.D. Thesis, UNSW, Sydney, 2000.
7. Sp a¨ th, E.; Wiss, A.; Polgar, N. Monatsh. Chem. 1929, 51,
190–204.
References
18. General procedure for the Bischler–Napieralski cycliza-
1
. (a) Welton, T. Chem. Rev. 1999, 99, 2071; (b) Wasser-
scheid, P.; Keim, W. Angew. Chem., Int. Ed. 2000, 39,
tion reaction in ionic liquid: POCl (ca. 9 mol equiv.) was
3
added dropwise to a suspension of the amide in the ionic
liquid (ca. 0.8 mL ionic liquid per 0.40 g of the amide) at
room temperature. After complete addition the mixture
was stirred at room temperature for 10 min then heated
to 90–100°C for 1 h whereupon the mixture turned black.
The reaction mixture was cooled to room temperature
then diluted with ethyl acetate and extracted with water.
The aqueous layer was made basic (pH 10) using 10%
3772; (c) Seddon, K. R. J. Chem. Technol. Biotechnol.
1997, 68, 351; (d) Olivier, H. J. Mol. Cat. A: Chem. 1999,
146, 285.
2
. (a) Blanchard, L. A.; Brennecke, J. F. Ind. Eng. Chem.
Res. 2001, 40, 287; (b) Huddleston, J. G.; Willauer, H.
D.; Swatloski, R. P.; Visser, A. E.; Rogers, R. D. Chem.
Commun. 1998, 1765; (c) Dai, S.; Ju, Y. H.; Barnes, C. E.
J. Chem. Soc., Dalton Trans. 1999, 1201; (d) Visser, A.
E.; Swatloski, R. P.; Reichert, W. M.; Griffin, S. T.;
Rogers, R. D. Ind. Eng. Chem. Res. 2000, 39, 3596.
. Dyson, P. J.; Ellis, D. J.; Parker, D. G.; Welton, T.
Chem. Commun. 1999, 25.
aqueous K
The organic layer was dried over MgSO
CO
and then extracted with ethyl acetate.
and the solvent
2
3
4
was removed in vacuo to give a white solid. The ionic
liquid was recovered from the original ethyl acetate layer
by evaporation under reduced pressure.
3
4
5
6
. Stark, A.; MacLean, B. L.; Singer, R. D. J. Chem. Soc.,
19. Preparation of 6,6%,7,7%-tetramethoxy-3,3%,4,4%-tetrahydro-
1,1%-bisisoquinoline 3: N,N%-Bis(3%,4%-dimethoxyphen-
Dalton Trans. 1999, 63.
. Fisher, T.; Sethi, A.; Welton, T.; Woolf, J. Tetrahedron
Lett. 1999, 40, 793.
ethyl)oxamide 2 (0.65 g, 1.6 mmol) in [bmim]PF
6
(1.3
mL) was treated with POCl (0.33 mL) according to the
3
. (a) B o¨ hm, V. P. W.; Herrmann, W. A. Chem. Eur. J.
general procedure to give the product as off-white needles
after crystallization from 95% ethanol (0.49 g, 81%) mp
2
000, 6, 1017; (b) Carmichael, A. J.; Earle, M. J.; Hol-
brey, J. D.; McCormac, P. B.; Seddon, K. R. Org. Lett.
999, 1, 997; (c) Xu, L.; Chen, W.; Xiao, J. Organometal-
15d
201–203°C (198–202°C).
wmax (Nujol): 1605, 1565,
1
1510, 1455, 1405, 1375, 1350, 1320, 1280, 1260, 1240,
1215, 1200, 1190, 1120, 1030, 990, 940, 915, 860, 825, 805,
lics 2000, 19, 1123; (d) Herrmann, W. A.; B o¨ hm, V. P. W.
J. Organomet. Chem. 1999, 572, 141.
. Dullius, J. E. L.; Suarez, P. A. Z.; Einloft, S.; De Souza,
R. F.; Dupont, J.; Ischer, J.; Cian, A. D. Organometallics
1
−
1 1
775 cm . H NMR (300 MHz, CDCl
7.4 Hz, CH -4 and CH -4%), 3.72 (6H, s, OCH
OCH -7%), 3.90 (4H, obscured triplet, CH -3 and CH
3.91 (6H, s, OCH -6 and OCH -6%), 6.73 (2H, s, H8 and
H8%), 6.87 (2H, s, H5 and H5%). C NMR (75.6 MHz,
CDCl ): l 25.5 (C4 and C4%), 47.3 (C3 and C3%), 55.9
(OCH -6, OCH -6%, OCH -7 and OCH -7%), 110.2 (C5
): l 2.79 (4H, t, J
-7 and
-3%),
3
7
2
2
3
3
2
2
998, 17, 815.
. Ellis, B.; Keim, W.; Wasserscheid, P. Chem. Commun.
999, 336.
3
3
13
8
9
1
3
. Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457 and
3
3
3
3
references cited therein.
and C5%), 110.5 (C8 and C8%), 121.0 (C8a and C8%a), 131.4
(C4a and C4%a), 147.3 (C7 and C7%), 151.3 (C6 and C6%),
164.6 (C1 and C1%). Mass spectrum: m/z 380 (M , 15%),
1
0. Chauvin, Y.; Olivier, H.; Mubmann, L. FR 95/14,147,
995 [Chem. Abstr. 1997, 127, P341298k].
1. Song, C. E.; Roh, E. J. Chem. Commun. 2000, 837.
+
1
1
379 (M−1, 13%), 349 (100), 192 (11).