Notes and references
1 G. Cahiez, M. Alami, R. J. K. Taylor, M. Reid and J. S. Foot, Manganese
dioxide, in Encyclopedia of Reagents for Organic Synthesis, ed.
L. A. Paquette, J. Wiley & Sons, New York, 2004.
2 A. Harriman, I. J. Pickering, J. M. Thomas and P. A. Christensen,
J. Chem. Soc., Faraday Trans. 1, 1988, 84, 2795; V. Y. Shafirovich and
A. E. Shilov, Kinetika i Kataliz, 1979, 20, 1156; M. M. Najafpour,
T. Ehrenberg, M. Wiechen and P. Kurz, Angew. Chem., Int. Ed., 2010, 49,
2233; M. M. Najafpour, J. Photochem. Photobiol., B, 2011, 104, 111;
M. M. Najafpour, Origins Life Evol. Biosphere, 2010, 41, 237;
M. M. Najafpour, Dalton Trans., 2011, 40, 3793; I. Zaharieva,
M. M. Najafpour, M. Wiechen, M. Haumann, P. Kurz and H. Dau,
Energy Environ. Sci., 2011, 4, 2400; M. M. Najafpour, Chem. Commun.,
2011, 47, 11724; R. K. Hocking, R. Brimblecombe, L. Chang, A. Singh,
M. H. Cheah, C. Glover, W. H. Casey and L. Spiccia, Nat. Chem., 2011,
3, 461; D. M. Robinson, Y. B. Go, M. Greenblatt and G. C. Dismukes,
J. Am. Chem. Soc., 2010, 132, 11467; M. M. Najafpour, Geomicrobiol.
J., 2011, 28, 714; Y. Gorlin and T. F. Jaramillo, J. Am. Chem. Soc., 2010,
132, 13612; T. Takashima, K. Hashimoto and R. Nakamura, J. Am.
Chem. Soc., 2012, 134, 1519; F. Jiao and H. Frei, Energy Environ. Sci.,
2010, 3, 1018; A. Iyer, J. Del-Pilar, C. K. King’ondu, E. Kissel,
H. Fabian Garces, H. Huang, A. M. El-Sawy, P. K. Dutta and S. L. Suib,
J. Phys. Chem. C, 2012, 116, 6474; M. M. Najafpour, M. Amouzadeh
Tabrizi, B. Haghighi and Govindjee, Dalton Trans., 2012, 41, 3906.
3 B. Dmuchovsky, M. C. Freerks and F. B. Zienty, J. Catal., 1965, 4, 577.
4 R. B. Anderson, K. C. Stein, J. J. Feenan and L. J. E. Hofer, Ind. Eng.
Chem., 1961, 53, 809.
Fig. 6 Recycling studies of the nano-sized manganese oxide in the
reaction of epoxidation of styrene.
5 A. Ueda and M. Haruta, Appl. Catal., B, 1998, 18, 115.
6 G. S. Kumar, M. Palanichamy, M. Hartmann and V. Murugesan, Catal.
Commun., 2007, 8, 493.
7 L. C. Wang, X. S. Huang, Q. Liu, Y. M. Liu, Y. Cao, H. Y. He, K. N. Fan
and J. H. Zhuang, J. Catal., 2008, 259, 66.
8 M. Amini, M. M. Najafpour, S. Nayeri, B. Pashaei and M. Bagherzadeh,
RSC Adv., 2012, 2, 3654; R. Ghosh, X. Shen, J. C. Villegas, Y. Ding,
K. Malinger and S. L. Suib, J. Phys. Chem. B, 2006, 110(14), 7592;
R. Ghosh, Y. C. Son, V. D. Makwana and S. L. Suib, J. Catal., 2004,
224, 288; L. Espinal, S. L. Suib and J. F. Rusling, J. Am. Chem. Soc.,
2004, 126, 7676; A. Askarinejad, M. Bagherzadeh and A. Morsali, Appl.
Surf. Sci., 2010, 256, 6678.
9 A. Navrotsky, C. Ma, K. Lilova and N. Birkner, Science, 2010, 330, 199.
10 M. M. Najafpour, S. Nayeri and B. Pashaei, Dalton Trans., 2011, 40,
9374; F. Jiao and H. Frei, Chem. Commun., 2010, 46, 2920;
M. M. Najafpour, Dalton Trans., 2011, 40, 3805.
Scheme 1 Proposed mechanism for the epoxidation of olefins by
−
manganese oxide in the presence of H2O2 and HCO3
.
shown to be highly active for the selective epoxidation of styrene
to styrene oxide by tert-butyl hydroperoxide or H2O2 but mild
activity or high peroxide decomposition is an associated problem
with these catalytic systems.28 Based on the previous
reports,25,26 a proposal for the mechanism is shown in
11 Z. Hong, Y. Cao and J. Deng, Mater. Lett., 2002, 52, 34.
12 M. Yin and S. O’Brien, J. Am. Chem. Soc., 2003, 125, 10180.
13 P. Duran, C. Moure, M. Villegas, J. Tartaj, A. C. Caballero and
J. F. Fernandez, J. Am. Ceram. Soc., 2004, 83, 1029.
14 K. Kandori, K. Kon-No and A. Kitahara, J. Colloid Interface Sci., 1988,
122, 78.
−
Scheme 1. HCO4 (eqn (1)), an important active oxidant that is
more nucleophilic than H2O2, has been detected by 13C MAS
NMR in this reaction.
15 M. P. Pileni, L. Motte and C. Petit, Chem. Mater., 1992, 4, 338.
16 A. Taleb, C. Petit and M. P. Pileni, Chem. Mater., 1997, 9, 950; Y. Zhao,
C. Li, F. Li, Z. Shi and S. Feng, Dalton Trans., 2011, 40, 583.
17 M. Maneva and N. Petroff, J. Therm. Anal., 1990, 36, 2511; T. Cseri,
S. Békássy, G. Kenessey, G. Liptay and F. Figueras, Thermochim. Acta,
1996, 288, 137; S. Yuvaraj, L. Fan-Yuan, C. Tsong-Huei and Y. Chuin-
Tih, J. Phys. Chem. B, 2003, 107, 1044; M. Morita, C. Iwakura and
H. Tamura, Electrochim. Acta, 1977, 22, 325; A. K. H. Nohman,
H. M. Ismail and G. A. M. Hussein, J. Anal. Appl. Pyrolysis, 1995, 34,
265; Z. D. Zivkovic, D. T. Zivković and D. B. Grujicic, J. Therm. Anal.
Calorim., 1998, 53, 617; P. K. Gallagher, F. Schrey and B. Prescott,
Thermochim. Acta, 1971, 2, 405.
18 Govindjee, J. F. Kern, J. Messinger and J. Whitmarsh, Photosystem II, in
Encyclopedia of Life Sciences (ELS). John Wiley & Sons, Ltd, Chiche-
ster, 2010, DOI: 10.1002/9780470015902.a0000669.pub2 (See http://
www.life.illinois.edu/govindjee/recent_papers.html).
19 Y. Umena, N. Kamiya and J. R. Shen, J. Photochem. Photobiol., B, 2011,
104, 9; J. Yano, J. Kern, K. Sauer, M. Latimer, Y. Pushkar, J. Biesiadka,
B. Loll, W. Saenger, J. Messinger, A. Zouni and V. Yachandra, Science,
2006, 314, 821; J. Barber, Inorg. Chem., 2008, 47, 1700;
M. M. Najafpour, Plant Biosyst., 2006, 140, 163; M. M. Najafpour,
Origins Life Evol. Biosphere, 2009, 39, 151; J. P. McEvoy and
G. W. Brudvig, Chem. Rev., 2006, 106, 4455.
ꢀ
ꢀ
H2O2 þ HCO3 Ð H2O þ HCO4
ð1Þ
4. Conclusion
Nano-sized manganese oxide, as a low-cost, easily synthesized
and environmentally friendly compound, was synthesized by a
very simple method in moderate temperature and without using
any organic compounds. It was characterized by SEM, XRD,
FTIR, AAS and TEM. These compounds act as efficient cata-
lysts for water oxidation in the presence of Ce(IV). The nano-
sized manganese oxide showed high activity in the epoxidation
of aromatic olefins and mild activity in the epoxidation of some
non-aromatic olefins in the presence of H2O2 and bicarbonate ions.
Acknowledgements
These authors are grateful to Institute for Advanced Studies in
Basic Sciences, University of Maragheh, and Sharif University
of Technology for financial support.
20 Y. Umena, K. Kawakami, J. R. Shen and N. Kamiya, Nature, 2011, 473,
55.
11030 | Dalton Trans., 2012, 41, 11026–11031
This journal is © The Royal Society of Chemistry 2012