C O M M U N I C A T I O N S
Table 2. Scope of NHC-Catalyzed Reduction/Hydroacylation
process occurs via separate reduction and acylation steps in which
the organocatalyst is responsible for two key bond-forming steps
of the catalytic cycle. Further investigations of the generality of
this catalytic process and the development of asymmetric variants
are currently ongoing and will be reported in due course.
Acknowledgment. Support has been generously provided by North-
western University, the PRF (Type-G), Abbott Laboratories, Amgen, 3M,
and Boehringer-Ingelheim (New Investigator Awards). A.C. is the recipient
of a Dow Fellowship. We thank FMCLithium, Sigma-Aldrich, and BASF
for reagent support, Troy Reynolds (NU) for assistance with X-ray crys-
tallography, and Dr. Steve Wittenberger (Abbott) for helpful discussions.
Supporting Information Available: Experimental procedures and
spectral data for all new compounds. This material is available free of
References
(1) (a) Arndtsen, B. A.; Bergman, R. G.; Mobley, T. A.; Peterson, T. H. Acc.
Chem. Res. 1995, 28, 154-162. (b) Shilov, A. E.; Shul’pin, G. B. Chem.
ReV. 1997, 97, 2879-2932. (c) Labinger, J. A.; Bercaw, J. E. Nature
2002, 417, 507-514. (d) Ritleng, V.; Sirlin, C.; Pfeffer, M. Chem. ReV.
2002, 102, 1731-1769 (d) Lersch, M.; Tilset, M. Chem. ReV. 2005, 105,
2471-2526.
(2) (a) Sakai, K.; Oda, O.; Nakamura, N.; Ide, J. Tetrahedron Lett. 1972,
1287-1290. (b) Bosnich, B. Acc. Chem. Res. 1998, 31, 667-674 and
references therein. (c) Larock, R. C.; Oertle, K.; Potter, G. F. J. Am. Chem.
Soc. 1980, 102, 190-197. (d) Campbell, R. E.; Lochow, C. F.; Vora, K.
P.; Miller, R. G. J. Am. Chem. Soc. 1980, 102, 5824-5830. (e) Lenges,
C. P.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 3165-3166. (f) Jun,
C. H.; Moon, C. W.; Lee, D. Y. Chem. Eur. J. 2002, 8, 2423-2428 and
references therein. (g) Aloise, A. D.; Layton, M. E.; Shair, M. D. J. Am.
Chem. Soc. 2000, 122, 12610-12611. (h) Tanaka, K.; Fu, G. C. J. Am.
Chem. Soc. 2001, 123, 11492-11493. (i) Kundu, K.; McCullagh, J. V.;
Morehead, A. T., Jr. J. Am. Chem. Soc. 2005, 127, 16042-16043. For a
directed intermolecular hydroacylation reaction, see: (j) Willis, M. C.;
McNally, S. J.; Beswick, P. J. Angew. Chem., Int. Ed. 2004, 43, 340-343.
(3) For selected examples of radical-mediated hydroacylations, see: (a) Urry,
W. H.; Nishihar. A.; Niu, J. H. Y. J. Org. Chem. 1967, 32, 347-349. (b)
Scholl, M.; Lim, C. K.; Fu, G. C. J. Org. Chem. 1995, 60, 6229-6231.
(4) For an example of this strategy, see: Huang, Y.; Walji, A. M.; Larsen,
C. H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 15051-15052.
(5) For reviews, see: (a) Bourissou, D.; Guerret, O.; Gabbai, F. P.; Bertrand,
G. Chem. ReV. 2000, 100, 39-91. (b) Herrmann, W. A. Angew. Chem.,
Int. Ed. 2002, 41, 1291-1309. (c) Enders, D.; Balensiefer, T. Acc. Chem.
Res. 2004, 37, 534-541. (d) Nair, V.; Bindu, S.; Sreekumar, V. Angew.
Chem., Int. Ed. 2004, 43, 5130-5135.
a Protic solvent reactions employed 1a and aprotic solvent reaction used
1b. b Aldehyde 1a was used. c Performed at 40 °C.
produced directly in the reaction along with the benzoic ester.
Currently, these conditions do not generate hydroacylation/reduction
products with enolizable keto esters. For less active ketones (e.g.,
entry 8), only protic conditions are successful in the reduction, and
investigations to understand this divergent reactivity are underway.
Our preliminary investigations have provided information about
the operative reaction pathway in Scheme 1. The experiment using
deuterium-labeled benzaldehyde and 4-methyl benzaldehyde in CH2-
Cl2 generates all potential products (7, 10, and 28-29). This obser-
vation strongly supports that the reduction and acylation steps are
separate events. The combination of benzoin (30, Scheme 1) and
keto ester (2a) in the presence of 5 and DBU affords the hydro-
acylated product 7 in 63% yield, indicating that path A is reversible
and potential intermediates such as I or II can enter into catalytic
cycle (path B).14
(6) (a) Seebach, D. Angew. Chem., Int. Ed. Engl. 1979, 18, 239-258. (b)
Johnson, J. S. Angew. Chem., Int. Ed. 2004, 43, 1326-1328.
(7) (a) Ide, W. S.; Buck, J. S. Org. React. 1948, 4, 269-303. (b) Breslow, R.
J. Am. Chem. Soc. 1958, 79, 3719-3726. (c) Hassner, A. In Compre-
hensiVe Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon
Press: Oxford, 1991; Vol. 1, p 541.
(8) (a) Stetter, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 639-712. (b) Enders,
D.; Breuer, K.; Runsink, J.; Teles, J. H. HelV. Chim. Acta 1996, 79, 1899-
1902. (c) de Alaniz, J. R.; Rovis, T. J. Am. Chem. Soc. 2005, 127, 6284-
6289. (d) Christmann, M. Angew. Chem., Int. Ed. 2005, 44, 2632-2634.
(9) (a) Breslow, R.; Schmuck, C. Tetrahedron Lett. 1996, 37, 8241-8242.
(b) White, M. J.; Leeper, F. J. J. Org. Chem. 2001, 66, 5124-5131.
(10) (a) Geissman, T. A. Org. React. 1944, 2, 94. (b) Jin, S. J.; Arora, P. K.;
Sayre, L. M. J. Org. Chem. 1990, 55, 3011-3018. (c) Ishihara, K.; Yano,
T. Org. Lett. 2004, 6, 1983-1986. For Lewis acid-catalyzed Cannizzaro
reactions, see: (a) Russell, A. E.; Miller, S. P.; Morken, J. P. J. Org.
Chem. 2000, 65, 8381-8383. (b) Curini, M.; Epifano, F.; Genovese, S.;
Marcotullio, M. C.; Rosati, O. Org. Lett. 2005, 7, 1331-1333
(11) For recent examples of organocatalytic hydride reductions using the
Hantzsch ester, see: (a) Yang, J. W.; Hechavarria Fonseca, M. T.; List,
B. Angew. Chem., Int. Ed. 2004, 43, 6660-6662. (b) Ouellet, S. G.; Tuttle,
J. B.; MacMillan, D. W. C. J. Am. Chem. Soc. 2005, 127, 32-33. (c)
Yang, J. W.; Hechavarria Fonseca, M. T.; List, B. J. Am. Chem. Soc.
2005, 127, 15036-15037.
(12) (a) Berberich, H.; Roesky, P. W. Angew. Chem., Int. Ed. 1998, 37, 1569-
1571. (b) Le Bideau, F.; Coradin, T.; Gourier, D.; Henique, J.; Samuel,
E. Tetrahedron Lett. 2000, 41, 5215-5218. (c) To¨rma¨kangas, O. P.;
Koskinen, A. M. P. Recent Res. DeV. Org. Chem. 2002, 5, 225-255.
(13) The use of N,N′-dimethylbenzimidazolium iodide as a precatalyst affords
only 15% of 6, while 1,4,5-trimethylthiazolium iodide yields 76%.
(14) The heteroazolium-catalyzed benzoin reaction has been shown to be
reversible, see refs 6 and 8.
This NHC-catalyzed hydroacylation is also successful in an
intramolecular manifold (eq 5). The exposure of 31 to 5 delivers
the benzofuranone 32 in moderate yield under aprotic conditions.
In summary, we have demonstrated that hydroacylations of
activated ketones can be catalyzed by N-heterocyclic carbenes. This
JA060833A
9
J. AM. CHEM. SOC. VOL. 128, NO. 14, 2006 4559