Angewandte Chemie International Edition
10.1002/anie.202009110
RESEARCH ARTICLE
[
[
7]
8]
J. A. Ferreras, J. S. Ryu, F. Di Lello, D. S. Tan, L. E. Quadri,
Nat. Chem. Biol. 2005, 1, 29-32.
A. L. Crumbliss, Handbook of Microbial Iron Chelates, CRC
Press, Boca Raton, FL, 1991.
R. J. Bergeron, G. M. Brittenham, The Development of Iron
Chelators for Clinical Use, CRC Press Boca Raton, FL,
mechanism for provision of -aminoacyl starter units to type I
modular polyketide synthases,[35] to our knowledge there is no
precedent for this mechanism being employed to provide such
starter units to NRPSs. Thus, our findings expand the scope of -
aminoacyl starter unit biosynthetic machinery, which may prove
useful in bioengineering approaches to natural product
diversification.
[9]
1994.
[
10]
a) J. B. Neilands, J. Biol. Chem. 1995, 270, 26723-26726;
b) E. Ahmed, S. J. M. Holmström, Microb. Biotechnol. 2014,
The bolagladin biosynthetic gene cluster is present in
approximately 45% of B. gladioli genomes, but was not found in
other Burkholderia species. This suggests the bolagladins play an
important role in the adaption of B. gladioli to its environmental
niches. Several lines of evidence indicate that the bolagladins
may function as siderophores, further challenging the assumption
7
, 196-208.
[11]
E. Mahenthiralingam, A. Baldwin, C. G. Dowson, J. Appl.
Microbiol. 2008, 104, 1539-1551.
a) L. P. Partida-Martinez, I. Groth, I. Schmitt, W. Richter, M.
Roth, C. Hertweck, Int. J. Syst. Evol. Microbiol. 2007, 57,
[
12]
2583-2590; b) N. Moebius, C. Ross, K. Scherlach, B. Rohm,
M. Roth, C. Hertweck, Chem. Biol. 2012, 19, 1164-1174; c)
X. Liu, S. Biswas, M. G. Berg, C. M. Antapli, F. Xie, Q. Wang,
M.-C. Tang, G.-L. Tang, L. Zhang, G. Dreyfuss, Y.-Q.
Cheng, J. Nat. Prod. 2013, 76, 685-693; d) J. B. Biggins, C.
D. Gleber, S. F. Brady, Org. Lett. 2011, 13, 1536-1539; e)
A. S. Eustáquio, J. E. Janso, A. S. Ratnayake, C. J.
O’Donnell, F. E. Koehn, Proc. Natl. Acad. Sci. U. S. A. 2014,
that B. gladioli employs siderophore-independent mechanisms for
iron acquisition.[
15-16]
While the mode of ferric iron binding to the
bolagladins remains to be established, it seems likely that the two
citrate-derived carboxy and methoxy groups in the unusual fatty
acid residue, and one or both of the side hydroxyl groups in the
depsipetide are involved. Siderophores are known to play roles in
virulence and metal ion tolerance in other Burkholderia species,
but a Galleria mellonella infection model did not provide evidence
that the bolagladins contribute to virulence in B. gladioli and
bolagladin-deficient mutants did not show reduced tolerance
towards metal ions. Further studies are therefore required to
develop a better understanding of the adaptive benefit the
bolagladins confer on B. gladioli.
111, E3376-E3385; f) K. Ishida, T. Lincke, S. Behnken, C.
Hertweck, J. Am. Chem. Soc. 2010, 132, 13966-13968; g)
M. R. Seyedsayamdost, J. R. Chandler, J. A. Blodgett, P.
S. Lima, B. A. Duerkop, K. Oinuma, E. P. Greenberg, J.
Clardy, Org. Lett. 2010, 12, 716-719; h) E.
Mahenthiralingam, L. Song, A. Sass, J. White, C. Wilmot, A.
Marchbank, O. Boaisha, J. Paine, D. Knight, Gregory L.
Challis, Chem. Biol. 2011, 18, 665-677; i) L. Song, M.
Jenner, J. Masschelein, C. Jones, M. J. Bull, S. R. Harris,
R. C. Hartkoorn, A. Vocat, I. Romero-Canelon, P. Coupland,
G. Webster, M. Dunn, R. Weiser, C. Paisey, S. T. Cole, J.
Parkhill, E. Mahenthiralingam, G. L. Challis, J. Am. Chem.
Soc. 2017, 139, 7974-7981; j) A. J. Mullins, J. A. H. Murray,
M. J. Bull, M. Jenner, C. Jones, G. Webster, A. E. Green,
D. R. Neill, T. R. Connor, J. Parkhill, G. L. Challis, E.
Mahenthiralingam, Nat. Microbiol. 2019, 4, 996-1005.
Q. Esmaeel, M. Pupin, N. P. Kieu, G. Chataigné, M. Béchet,
J. Deravel, F. Krier, M. Höfte, P. Jacques, V. Leclère,
Microbiologyopen 2016, 5, 512-526.
Acknowledgements
This research was supported by grants from the BBSRC
[
13]
(
BB/L021692/1 and BB/L023342/1) to E.M and G.L.C; A.J.M.,
G.W., E.M. and G.L.C. also acknowledge current funding from
BBSRC (BB/S007652/1 and BB/S008020/1). Y.D. was supported
by a grant from the MRC (MR/N501839/1 to G.L.C). I.T.N. was
supported by the BBSRC through the Midlands Integrative
Bioscience Doctoral Training Partnership (BB/M01116X/1). E.M.
and G.W. acknowledge funding from the Life Science Bridging
Fund (LSBF R2-004) for the HPLC analysis and instrumentation.
The Bruker MaXis Impact UHPLC-ESI-Q-TOF-MS instrument
used in this research was funded by the BBSRC (B/K002341/1 to
G.L.C.). G.L.C. was the recipient of a Wolfson Research Merit
Award from the Royal Society (WM130033).
[14]
a) J. M. Meyer, D. Hohnadel, F. Halle, J. Gen. Microbiol.
1989, 135, 1479-1487; b) J. M. Meyer, V. T. Van, A. Stintzi,
O. Berge, G. Winkelmann, Biometals 1995, 8, 309-317; c)
H. Stephan, S. Freund, W. Beck, G. Jung, J. M. Meyer, G.
Winkelmann, Biometals 1993, 6, 93-100; dI. Barelmann, J.
M. Meyer, K. Taraz, H. Budzikiewicz, in Z. Naturforsch. C,
1996, 51, 627-630; e) P. Darling, M. Chan, A. D. Cox, P. A.
Sokol, Infect. Immun. 1998, 66, 874-877; f) J. Franke, K.
Ishida, M. Ishida-Ito, C. Hertweck, Angew. Chem. Int. Ed.
2013, 52, 8271-8275; g) J. Franke, K. Ishida, C. Hertweck,
Chem. Eur. J. 2015, 21, 8010-8014.
A. T. Butt, M. S. Thomas, Front. Cell. Infect. Microbiol. 2017,
[
[
15]
16]
7, 460-460.
R. Hermenau, J. L. Mehl, K. Ishida, B. Dose, S. J. Pidot, T.
Keywords: natural products • genome mining • nonribosomal
peptide synthetase • fatty acid • biosynthesis
P. Stinear, C. Hertweck, Angew. Chem. Int. Ed. Engl. 2019,
58, 13024-13029.
[
17]
M. Jenner, X. Jian, Y. Dashti, J. Masschelein, C. Hobson,
D. M. Roberts, C. Jones, S. Harris, J. Parkhill, H. A. Raja,
N. H. Oberlies, C. J. Pearce, E. Mahenthiralingam, G. L.
Challis, Chem. Sci. 2019, 10, 5489-5494.
C. Boros, C. J. Smith, Y. Vasina, Y. Che, A. B. Dix, B.
Darveaux, C. Pearce, J. Antibiot. 2006, 59, 486-494.
B. Dose, S. P. Niehs, K. Scherlach, L. V. Florez, M.
Kaltenpoth, C. Hertweck, ACS Chem. Biol. 2018, 13, 2414-
[
[
1]
2]
M. Sánchez, L. Sabio, N. Gálvez, M. Capdevila, J. M.
Dominguez-Vera, IUBMB Life 2017, 69, 382-388.
S. C. Andrews, A. K. Robinson, F. Rodríguez-Quiñones,
FEMS Microbiol. Rev. 2003, 27, 215-237.
[
[
18]
19]
[
[
3]
4]
E. P. Skaar, PLoS Pathog. 2010, 6, e1000949.
B. Schwyn, J. B. Neilands, Anal. Biochem. 1987, 160, 47-
56.
2420.
[
5]
a) R. C. Hider, X. Kong, Nat. Prod. Rep. 2010, 27, 637-657;
b) J. P. Bellenger, T. Wichard, A. B. Kustka, A. M. L.
Kraepiel, Nat. Geosci. 2008, 1, 243-246.
[
20]
a) S. Koshino, H. Koshino, N. Matsuura, K. Kobinata, R.
Onose, K. Isono, H. Osada, J. Antibiot. 1995, 48, 185-187;
b) S. Son, S. K. Ko, S. M. Kim, E. Kim, G. S. Kim, B. Lee, I.
J. Ryoo, W. G. Kim, J. S. Lee, Y. S. Hong, J. H. Jang, J. S.
Ahn, J. Nat. Prod. 2018, 81, 2462-2469.
R. Bhushan, H. Bruckner, Amino Acids 2004, 27, 231-247.
S. Vijayasarathy, P. Prasad, L. J. Fremlin, R. Ratnayake, A.
A. Salim, Z. Khalil, R. J. Capon, J. Nat. Prod. 2016, 79, 421-
[
6]
a) J. Heesemann, K. Hantke, T. Vocke, E. Saken, A. Rakin,
I. Stojiljkovic, R. Berner, Mol. Microbiol. 1993, 8, 397-408;
b) J. J. Bullen, E. Griffiths, Iron and Infection: Molecular,
Physiological and Clinical Aspects, 2nd ed., John Wiley &
Sons, New York, 1999.
[
[
21]
22]
427.
8
This article is protected by copyright. All rights reserved.