Page 5 of 6
Pleas Ge ꢀ rd eo eꢀ nn o Ct ꢀ ha ed mj u si st ꢀt mr yarginsꢀ
JournalꢀNameꢀ
ꢀARTICLEꢀ
iridiumꢀ comparedꢀ toꢀ theꢀ batchꢀ process.ꢀ Catalystꢀ 3ꢀ thereforeꢀ
providesꢀ anꢀ alternativeꢀ toꢀ fac-Ir(ppy)3ꢀ whenꢀ large-scaleꢀ
Chem. Eur. J. 2014, 20, 15226-15232.
DOI: 10.1039/C5GC01792K
1
1
8
9
For leading reviews on photocatalyzed reactions in flow see: (a) Z. J.
Garlets, J. D. Nguyen and C. R. J. Stephenson, Isr. J. Chem., 2014, 54,
reactionꢀsetupsꢀareꢀrequired.ꢀ
ꢀ
3
51–360; b) Y. Su, J. W. Straathof, V. Hessel and T. Noel, Chem. Eur.
J., 2014, 20, 10562-10589.
Polyisobutylene was introduced as non-polar hydrocarbon support for
reagents and catalysts by Bergbreiter et al.: (a) D. E. Bergbreiter and J.
Li, Chem. Commun., 2004, 1, 42–43; (b) J. Li, S. Sung, J. Tia and D. E.
Bergbreiter, Tetrahedron, 2005, 61, 12081–12092.
Acknowledgementsꢀ
Thisꢀ workꢀ wasꢀ supportedꢀ byꢀ theꢀ GRKꢀ 1626ꢀ (“Chemicalꢀ
Photocatalysis”)ꢀofꢀtheꢀDFG.ꢀTheꢀauthorsꢀthankꢀA.ꢀWimmerꢀandꢀ 20 Polyisobutylene bromide is commercially available from Strem.
2
1
(a) D. E. Bergbreiter, ACS Macro Lett., 2014, 3, 260–265; (b) A. Behr,
M.ꢀTautzꢀ(Univ.ꢀofꢀRegensburg)ꢀforꢀtheirꢀhelpꢀwithꢀpreliminaryꢀ
studiesꢀandꢀTehshikꢀP.ꢀYoonꢀ(Univ.ꢀofꢀWisconsin-Madison)ꢀforꢀ
helpfulꢀdiscussions.ꢀ
G. Henze and R. Schomäcker, Adv. Synth. Catal., 2006, 348, 1485–
1
495; (c) D. E. Bergbreiter and S. D. Sung, Adv. Synth. Catal., 2006,
48, 1352–1366.
3
2
2
A. W. Francis, Critical Solution Temperatures, American Chemical
Society, Washington, DC, 1961.
Notesꢀandꢀreferencesꢀ
23 Representative examples: (a) X.-J. Tang and W. R. Dolbier, Jr., Angew.
Chem. Int. Ed. 2015, 54, 4246-4249; (b) Z. Zhang, C. S. Thomoson, X.-
J. Tang and W. R. Dolbier, Jr., Org. Lett. 2015, 17, 3528-3531; (c) J.-L.
Zhang, Y. Liu, G.-F. Jiang and J.-H. Li, Synlett 2014, 1031–1035; (d) ·
Y. Liu, J.-L. Zhang, R.-J. Song and J.-H. Li, Eur. J. Org. Chem., 2014,
1
Leading reviews: (a) K. Zeitler, Angew. Chem., Int. Ed., 2009, 48, 9785–
789; (b) J. M. R. Narayanam and C. R. J. Stephenson, Chem. Soc.
9
Rev., 2011, 40, 102–113; (c) C. K. Prier, D. A. Rankic and D. W. C.
MacMillan, Chem. Rev., 2013, 113, 5322–5363; (d) S. Paria and O.
Reiser, ChemCatChem, 2014, 6, 2477–2483; (e) D. M. Schultz and T.
P. Yoon, Science, 2014, 343, 985.
1
177–1181.
2
2
4
5
J. D. Nguyen, E. M. D’Amato, J. M. R. Narayanam and C. R. J.
Stephenson, Nat. Chem., 2012, 4, 854–859.
2
3
(a) X. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891–2959; (b) M.
Cherevatskaya, M. Neumann, S. Füldner, C. Harlander, S. Kümmel, S.
Dankesreiter, A. Pfitzner, K. Zeitler and B. König, Angew. Chem., Int.
Ed., 2012, 51, 4062–4066.
(a) M. Zagajewski, J. Dreimann and A. Behr, Chem. Ing. Tech., 2014,
8
6, 449–457; (b) M. Zagajewski, A. Behr, P. Sasse and J. Wittmann,
Chem. Eng. Sci., 2014, 115, 88–94; (c) S. D. Dietz, C. M. Ohman, T. A.
Scholten and S. Gebhard, in Org. React. Catal. Soc., Richmond, VA,
(a) M. Neumann, S. Füldner, B. König and K. Zeitler, Angew. Chem. Int.
Ed., 2011, 50, 951–954; (b) I. Ghosh, T. Ghosh, J. I. Bardagi and B.
König, Science, 2014, 346, 725–728; (c) D. A. Nicewicz and T. M.
Nguyen, ACS Catal., 2014, 4, 355–360.
2
008.
2
6
(a) I. T. Horváth, G. Kiss, R. A. Cook, J. E. Bond, P. A. Stevens, J.
Rábai and E. J. Mozeleski, J. Am. Chem. Soc., 1998, 120, 3133–3143;
(
b) E. Perperi, Y. Huang, P. Angeli, G. Manos, C. R. Mathison, D. J.
Cole-Hamilton, D. J. Adams and E. G. Hope, Dalton Trans., 2004,
062–2064.
D. Rackl, V. Kais, P. Kreitmeier and O. Reiser, Beilstein J. Org. Chem.,
014, 10, 2157–2165.
4
5
(a) F. Teplý, Collect. Czechoslov. Chem. Commun., 2011, 76, 859–917;
(
b) T. Koike and M. Akita, Inorg. Chem. Front., 2014, 1, 562–576.
(a) J.-M. Kern and J.-P. Sauvage, J. Chem. Soc., Chem. Commun.,
987, 546, 546–548; (b) S. Paria, M. Pirtsch, V. Kais and O. Reiser,
2
2
2
7
8
1
2
Synthesis, 2013, 45, 2689–2698; (c) M. Pirtsch, S. Paria, T. Matsuno, H.
Isobe and O. Reiser, Chem. Eur. J., 2012, 18, 7336–7340; (d) M. Majek
and A. J. von Wangelin, Angew. Chem., Int. Ed., 2013, 52, 5919–5921;
Acetonitrile and heptane exhibit a low solubility at room temperature.
The mass fraction of heptane in heptane saturated acetonitrile at 25 °C
is about 9%, see: I. Nagata, Thermochim. Acta,, 1987, 114, 227–238.
To avoid an extraction of heptane into acetonitrile over time, fresh
substrate is always added in heptane-saturated acetonitrile to keep the
amount of heptane constant. As shown in Figure 2 and discussed in the
text, for the first 4 mmol substrate converted, the total loss of 3 is
approximately 4% and then drops to <0.1% (<2 ppm) for the remaining
(
e) D. B. Bagal, G. Kachkovskyi, M. Knorn, T. Rawner, B. M. Bhanage
and O. Reiser, Angew. Chem. Int. Ed., 2015, 54, 6999–7002.
S. M. Stevenson, M. P. Shores and E. M. Ferreira, Angew. Chem., Int.
Ed., 2015, 54, 6506–6510.
6
7
G. Kachkovskyi, V. Kais, P. Kohls, S. Paria, M. Pirtsch, D. Rackl, H. Seo
and O. Reiser, in Chemical Photocatalysis (Ed.: B. König), De Gruyter,
Berlin, 2013, 139–150.
2
6 mmol. Details are discussed in the Supporting Information.
K. Singh, S. J. Staig and J. D. Weaver, J. Am. Chem. Soc., 2014, 136,
275–5278.
Detailed reaction conditions are described in the Supporting Information.
Photochemical transformations in biphasic system consisting of
2
9
8
K. A. King, P. J. Spellane and R. J. Watts, J. Am. Chem. Soc., 1985,
5
1
07, 1431–1432.
3
3
0
1
9
1
J. D. Cuthbertson and D. W. C. MacMillan, Nature, 2015, 519, 74–77.
N. Iqbal, J. Jung, S. Park and E. J. Cho, Angew. Chem., Int. Ed., 2014,
a
0
1
2
deuterated acetonitrile and perfluoroalkane were demonstrated for
singlet oxygen-mediated oxidations: S. G. DiMagno, P. H. Dussault and
J. A. Schultz, J. Am. Chem. Soc., 1996, 118, 5312–5313. In the
commercial Ruhrchemie/Rhone–Poulenc process aqueous catalyst and
product phase are continuously separated: E. Wiebus and B. Cornils,
Chem. Ing. Tech., 1994, 66, 916–923. For a recent report using ionic
liquids as the catalyst phase see D. C. Fabry, M. A. Ronge and M.
Rueping Chem. Eur. J. 2015, 21, 5350-5354.
5
3, 539–542.
Z. He, M. Bae, J. Wu and T. F. Jamison, Angew. Chem., Int. Ed., 2014,
3, 14451–14455.
(a) M. C. DeRosa and R. J. Crutchley, Coord. Chem. Rev., 2002, 233-
34, 351–371. For recent developments see: (b) S. Breitenlechner and
1
1
5
2
T. Bach, Angew. Chem., Int. Ed., 2008, 47, 7957–7959; (c) H.
Shimakoshi, M. Nishi, A. Tanaka, K. Chikama and Y. Hisaeda, Chem.
Commun., 2011, 47, 6548–6550; (d) D. Maggioni, F. Fenili, L.
D’Alfonso, D. Donghi, M. Panigati, I. Zanoni, R. Marzi, A. Manfredi, P.
Ferruti, G. D’Alfonso, et al., Inorg. Chem., 2012, 51, 12776–12788.
M. Benaglia, Recoverable and Recyclable Catalysts, Wiley-VCH, West
Sussex, 2009.
1
1
3
4
N. Priyadarshani, Y. Liang, J. Suriboot, H. S. Bazzi and D. E.
Bergbreiter, ACS Macro Lett., 2013, 2, 571–574.
1
1
1
5
6
7
Sigma-Aldrich (May 2015).
W.-J. Yoo and S. Kobayashi, Green Chem., 2014, 16, 2438–2442.
L. D. Elliot, J. P. Knowles, P. J. Koovits, K. G. Maskill, M. J. Ralph, G.
Lejeune, L. J. Edwards, R. I. Robinson, I. R. Clemens, B. Cox, D. D.
Thisꢀjournalꢀisꢀ©ꢀTheꢀRoyalꢀSocietyꢀofꢀChemistryꢀ20xxꢀ
J.ꢀName.,ꢀ2013,ꢀ00,ꢀ1-3ꢀ|ꢀ5ꢀ
Pleaseꢀdoꢀnotꢀadjustꢀmarginsꢀ