Organic Letters
Letter
17645−17651. (j) Ackerman, L. K. G.; Lovell, M. M.; Weix, D. J.
Multimetallic Catalysed Cross-Coupling of Aryl Bromides with Aryl
Triflates. Nature 2015, 524, 454−457. (k) Ackerman, L. K. G.; Anka-
Lufford, L. L.; Naodovic, M.; Weix, D. J. Cobalt Co-Catalysis for
Cross-Electrophile Coupling: Diarylmethanes from Benzyl Mesylates
and Aryl Halides. Chem. Sci. 2015, 6, 1115−1119. (l) Kadunce, N. T.;
Reisman, S. E. Nickel-Catalyzed Asymmetric Reductive Cross-
Coupling between Heteroaryl Iodides and α-Chloronitriles. J. Am.
Chem. Soc. 2015, 137, 10480−10483. (m) Wang, X.; Wang, S.; Xue,
W.; Gong, H. Nickel-Catalyzed Reductive Coupling of Aryl Bromides
with Tertiary Alkyl Halides. J. Am. Chem. Soc. 2015, 137, 11562−
11565. (n) Arendt, K. M.; Doyle, A. G. Dialkyl Ether Formation by
Nickel-Catalyzed Cross-Coupling of Acetals and Aryl Iodides. Angew.
Chem., Int. Ed. 2015, 54, 9876−9880. (o) Liu, J.; Ren, Q.; Zhang, X.;
Gong, H. Preparation of Vinyl Arenes by Nickel-Catalyzed Reductive
Coupling of Aryl Halides with Vinyl Bromides. Angew. Chem., Int. Ed.
Catalyzed Reductive Electrophilic Ring Opening of Cycloketone
Oxime Esters with Aroyl Chlorides. ACS Catal. 2018, 8, 11324−
11329.
(5) (a) Organofluorine Chemistry, Principles and Commercial
Applications. In Topics in Applied Chemistry; Banks, R. E., Smart, B. E.,
Tatlow, J. C., Eds.; Springer Press: New York, 1994. (b) Modern
Fluoroorganic Chemistry: Synthesis Reactivity, Applications; Kirsch, P.,
Ed.; Wiley-VCH: Weinheim, Germany, 2004. (c) Muller, K.; Faeh,
̈
C.; Diederich, F. Fluorine in Pharmaceuticals: Looking Beyond
Intuition. Science 2007, 317, 1881−1886. (d) Purser, S.; Moore, P. R.;
Swallow, S.; Gouverneur, V. Fluorine in Medicinal Chemistry. Chem.
Soc. Rev. 2008, 37, 320−330. (e) Hagmann, W. K. The Many Roles
for Fluorine in Medicinal Chemistry. J. Med. Chem. 2008, 51, 4359−
4369. (f) Kirk, K. L. Fluorination in Medicinal Chemistry: Methods,
Strategies, and Recent Developments. Org. Process Res. Dev. 2008, 12,
305−321. (g) Fluorine in Medicinal Chemistry and Chemical Biology;
Ojima, I., Ed.; Wiley-Blackwell: Chichester, U.K., 2009. (h) Modern
Fluoroorganic Chemistry: Synthesis Reactivity, Applications, 2nd ed.;
Kirsch, P., Ed.; Wiley-VCH: Weinheim, Germany, 2013. (I) Gillis, E.
P.; Eastman, K. J.; Hill, M. D.; Donnelly, D. J.; Meanwell, N. A.
Applications of Fluorine in Medicinal Chemistry. J. Med. Chem. 2015,
58, 8315−8359. (j) Zhou, Y.; Wang, J.; Gu, Z.; Wang, S.; Zhu, W.;
̈
2016, 55, 15544−15548. (p) Borjesson, M.; Moragas, T.; Martin, R.
Ni-Catalyzed Carboxylation of Unactivated Alkyl Chlorides with CO2.
J. Am. Chem. Soc. 2016, 138, 7504−7507. (q) Zhang, P.; Le, C.;
MacMillan, D. W. C. Silyl Radical Activation of Alkyl Halides in
Metallaphotoredox Catalysis: A Unique Pathway for Cross-Electro-
phile Coupling. J. Am. Chem. Soc. 2016, 138, 8084−8087. (r) Hansen,
E. C.; Pedro, D. J.; Wotal, A. C.; Gower, N. J.; Nelson, J. D.; Caron,
S.; Weix, D. J. New Ligands for Nickel Catalysis from Diverse
Pharmaceutical Heterocycle Libraries. Nat. Chem. 2016, 8, 1126−
1130. (s) Cai, Y.; Benischke, A. D.; Knochel, P.; Gosmini, C. Chem. -
Eur. J. 2017, 23, 250−253. (t) Woods, B. P.; Orlandi, M.; Huang, C.-
Y.; Sigman, M. S.; Doyle, A. G. Nickel-Catalyzed Enantioselective
Reductive Cross-Coupling of Styrenyl Aziridines. J. Am. Chem. Soc.
2017, 139, 5688−5691. (u) Chen, F.; Chen, K.; Zhang, Y.; He, Y.;
Wang, Y.-M.; Zhu, S. Remote Migratory Cross-Electrophile Coupling
and Olefin Hydroarylation Reactions Enabled by in Situ Generation
of NiH. J. Am. Chem. Soc. 2017, 139, 13929−13935. (v) Ai, Y.; Ye, N.;
Wang, Q.; Yahata, K.; Kishi, Y. Zirconium/Nickel-Mediated One-Pot
Ketone Synthesis. Angew. Chem., Int. Ed. 2017, 56, 10791−10795.
(w) Peng, L.; Li, Z.; Yin, G. Photochemical Nickel-Catalyzed
Reductive Migratory Cross-Coupling of Alkyl Bromides with Aryl
Bromides. Org. Lett. 2018, 20, 1880−1883. (x) Hofstra, J. L.;
Cherney, A. H.; Ordner, C. M.; Reisman, S. E. Synthesis of
Enantioenriched Allylic Silanes via Nickel-Catalyzed Reductive
Cross-Coupling. J. Am. Chem. Soc. 2018, 140, 139−142. (y) Yan,
X.-B.; Li, C.-L.; Jin, W.-J.; Guo, P.; Shu, X.-Z. Reductive Coupling of
Benzyl Oxalates with highly Functionalized Alkyl Bromides by Nickel
Catalysis. Chem. Sci. 2018, 9, 4529−4534. (z) Heinz, C.; Lutz, J. P.;
Simmons, E. M.; Miller, M. M.; Ewing, W. R.; Doyle, A. G. J. Am.
Chem. Soc. 2018, 140, 2292−2300. (aa) Wang, X.; Ma, G.; Peng, Y.;
Pitsch, C. E.; Moll, B. J.; Ly, T. D.; Wang, X.; Gong, H. Ni-Catalyzed
Reductive Coupling of Electron-Rich Aryl Iodides with Tertiary Alkyl
Halides. J. Am. Chem. Soc. 2018, 140, 14490−14497.
Acena, J. L.; Soloshonok, V. A.; Izawa, K.; Liu, H. Next Generation of
̃
Fluorine-Containing Pharmaceuticals, Compounds Currently in
Phase II−III Clinical Trials of Major Pharmaceutical Companies:
New Structural Trends and Therapeutic Areas. Chem. Rev. 2016, 116,
422−518. (k) Liu, Q.; Ni, C.; Hu, J. China’s Flourishing Synthetic
Organofluorine Chemistry: Innovations in the New Millennium. Natl.
Sci. Rev. 2017, 4, 303−325.
(6) (a) Bobek, M.; Kavai, I.; De Clercq, E. Synthesis and Biological
Activity of 5-(2,2-Difluorovinyl)-2’-deoxyuridine. J. Med. Chem. 1987,
30, 1494−1497. (b) Pan, Y.; Qiu, J.; Silverman, R. B. Design,
Synthesis, and Biological Activity of a Difluoro-Substituted,
Conformationally Rigid Vigabatrin Analogue as a Potent γ-Amino-
butyric Acid Aminotransferase Inhibitor. J. Med. Chem. 2003, 46,
5292−5293. (c) Altenburger, J.-M.; Lassalle, G. Y.; Matrougui, M.;
Galtier, D.; Jetha, J.-C.; Bocskei, Z.; Berry, C. N.; Lunven, C.; Lorrain,
J.; Herault, J.-P.; Schaeffer, P.; O’Connor, S. E.; Herbert, J.-M.
SSR182289A, a Selective and Potent Orally Active Thrombin
Inhibitor. Bioorg. Med. Chem. 2004, 12, 1713−1730. (d) Messaoudi,
́
S.; Treguier, B.; Hamze, A.; Provot, O.; Peyrat, J.-F.; De Losada, J. R.;
Liu, J.-M.; Bignon, J.; Wdzieczak-Bakala, J.; Thoret, S.; Dubois, J.;
Brion, J.-D.; Alami, M. Isocombretastatins A versus Combretastatins
A: The Forgotten isoCA-4 Isomer as a Highly Promising Cytotoxic
and Antitubulin Agen. J. Med. Chem. 2009, 52, 4538−4542.
(7) (a) Meanwell, N. A. Synopsis of Some Recent Tactical
Application of Bioisosteres in Drug Design. J. Med. Chem. 2011, 54,
́
2529−2591. (b) Magueur, G.; Crousse, B.; Ourevitch, M.; Bonnet-
́
́
Delpon, D.; Begue, J.-P. Fluoro-artemisinins: When a gem-Difluoro-
ethylene Replaces a Carbonyl Group. J. Fluorine Chem. 2006, 127,
637−642. (c) Leriche, C.; He, X.; Chang, C.-w.; Liu, H.-w. Reversal
of the Apparent Regiospecificity of NAD(P)H-Dependent Hydride
Transfer: The Properties of the Difluoromethylene Group, A
Carbonyl Mimic. J. Am. Chem. Soc. 2003, 125, 6348−6349.
(3) (a) Lu, X.; Wang, Y.; Zhang, B.; Pi, J.-J.; Wang, X.-X.; Gong, T.-
J.; Xiao, B.; Fu, Y. Nickel-Catalyzed Defluorinative Reductive Cross-
Coupling of gem-Difluoroalkenes with Unactivated Secondary and
Tertiary Alkyl Halide. J. Am. Chem. Soc. 2017, 139, 12632−12637.
(b) Lan, Y.; Yang, F.; Wang, C. Synthesis of gem-Difluoroalkenes via
Nickel-Catalyzed Allylic Defluorinative Reductive Cross-Coupling.
ACS Catal. 2018, 8, 9245−9251. (c) Lin, Z.; Lan, Y.; Wang, C.
Synthesis of gem-Difluoroalkenes via Nickel-Catalyzed Reductive C−
F and C−O Bond Cleavage. ACS Catal. 2019, 9, 775−780. (d) Lu,
X.; Wang, X.-X.; Gong, T.-J.; Pi, J.-J.; He, S.-J.; Fu, Y. Nickel-
Catalyzed Allylic Defluorinative Alkylation of Trifluoromethyl
Alkenes with Reductive Decarboxylation of Redox-Active Esters.
Chem. Sci. 2019, 10, 809−814. (e) Zhou, L.; Zhu, C.; Bi, P.; Feng, C.
Ni-Catalyzed Migratory Fluoro-Alkenylation of Unactivated Alkyl
Bromides with gem-Difluoroalkenes. Chem. Sci. 2019, 10, 1144−1149.
(4) (a) Huihui, K. M. M.; Caputo, J. A.; Melchor, Z.; Olivares, A.
M.; Spiewak, A. M.; Johnson, K. A.; DiBenedetto, T. A.; Kim, S.;
Ackerman, L. K. G.; Weix, D. J. Decarboxylative Cross-Electrophile
Coupling of N-Hydroxyphthalimide Esters with Aryl Iodides. J. Am.
Chem. Soc. 2016, 138, 5016−5019. (b) Ding, D.; Wang, C. Nickel-
(8) For reviews on the synthesis of gem-difluoroalkenes and their
applications in organic synthesis, see: (a) Ichikawa, J. gem-
Difluoroolefin Synthesis: General Methods via Thermostable
Difluorovinylmetals Starting from 2,2,2-Trifluoroethanol Derivatives.
J. Fluorine Chem. 2000, 105, 257−263. (b) Chelucci, G. Synthesis and
Metal-Catalyzed Reactions of gem-Dihalovinyl Systems. Chem. Rev.
2012, 112, 1344−1462. (c) Zhang, X.; Cao, S. Recent Advances in
the Synthesis and C-F Functionalization of gem-Difluoroalkenes.
Tetrahedron Lett. 2017, 58, 375−392.
(9) For recent examples of the gem-difluoroolefination of carbonyl
compounds, see: (a) Nowak, R.; Robins, M. J. New Methodology for
the Deoxygenative Difluoromethylenation of Aldehydes and Ketones;
Unexpected Formation of Tetrafluorocyclopropanes. Org. Lett. 2005,
7, 721−724. (b) Zhao, Y.; Huang, W.; Zhu, L.; Hu, J. Difluoromethyl
2-Pyridyl Sulfone: A New gem-Difluoroolefination Reagent for
F
Org. Lett. XXXX, XXX, XXX−XXX