2
84
LONG AND YANG
+
very quickly by NH4 ions during the SCR reaction. It is
difficulttofurtherconvertNO2 tonitratespeciesinthepres-
ence of NH3. Additionally, mordenite with a low Si/Al ratio
will have strong Brønsted acidity (which is favorable for
NH3 adsorption) and large ion-exchange capacity (which
7. Wark, M., Bruckner, A., Liese, T., and Grunert, W., J. Catal. 175, 48
1998).
. Ham, S. W., Nam, I. S., and Kim, Y. G., Korean J. Chem. Eng. 17, 318
2000).
. Mishima, H., Hashmoto, K., Ono, T., and Anpo, M., Appl. Catal. B 19,
19 (1998).
(
8
9
(
1
increases iron content in Fe–MOR and thus enhances NO 10. Komatsu, T., Nunokawa, M., Moon, I. S., Takahara, T., Namba, S., and
Yashima, T., J. Catal. 148, 427 (1994).
oxidation to NO2). Hence, SCR activity increased with a
1
1
1. Kieger, S., Delahay, G., Coq, B., and Neveu, B., J. Catal. 183, 267
1999).
decrease in the Si/Al ratio of Fe–MOR (Fig. 1). In ad-
(
+
dition, NO reduction needs NH4 pairs (reaction [2]). A
2. Kiovsky, J. R., Koradia, P. B., and Lim, C. T., Ind. Eng. Chem. Prod.
Res. Dev. 19, 218 (1980).
small pore diameter in zeolites will promote the formation
+
of NH pairs and thus be beneficial to NO reduction. How- 13. Amiridis, M. D., Puglisi, F., Dumesic, J. A., Millman, W. S., and Topsøe,
4
N.-Y., J. Catal. 142, 572 (1993).
ever, a small pore size clearly decreases pore diffusion rate
1
4. Komatsu, T., Uddin, M. A., and Yashima, T., in “Zeolites: A Refined
Tool for Designing Catalysis Sites” (L. Bonneviot and S. Kaliaguine,
Eds.), p. 437. Elsevier, Amsterdam, 1995.
5. Long, R. Q., and Yang, R. T., J. Am. Chem. Soc. 121, 5595 (1999).
16. Long, R. Q., and Yang, R. T., J. Catal. 188, 332 (1999).
and thus decreases SCR activity. Therefore, an appropriate
pore diameter in zeolites, e.g., 0.5–0.7 nm in ZSM-5, mor-
denite, and clinoptilolite, seems to be good for high SCR
activity.
1
1
1
7. Ma, A. Z., and Grunert, W., Chem. Commun. 71 (1999).
8. Sun, Q., Gao, Z. X., Chen, H, Y., and Sachtler, W. M. H., J. Catal. 201,
CONCLUSIONS
89 (2001).
1
2
9. Yang, R. T., Chen, J. P., Kikkinides, E. S., Cheng, L. S., and
Cichanowicz, J. E., Ind. Eng. Chem. Res. 31, 1440 (1992).
0. Chen, J. P., Hausladen, M. C., and Yang, R. T., J. Catal. 151, 135
Based on the above results, it can be concluded that
Fe-exchanged mordenite and clinoptilolite were highly ac-
tive for the ammonia SCR reaction, whereas Fe-exchanged
beta, ferrierite, and chabazite were less active. SCR activity
was improved by the presence of SO2 and SO2 + H2O. Near
(
1995).
2
2
2
1. Cheng, L. S., Yang, R. T., and Chen, N., J. Catal. 164, 70 (1996).
2. Long, R. Q., and Yang, R. T., Catal. Lett. 59, 39 (1999).
3. Long, R. Q., and Yang, R. T., J. Catal. 186, 254 (1999).
1
00% NO conversion was obtained on Fe–MOR at a high 24. Long, R. Q., and Yang, R. T., J. Catal. 196, 73 (2000).
5
−1
2
5. Long, R. Q., Chang, M. T., and Yang, R. T., Appl. Catal. B 33, 97 (2001).
space velocity (GHSV = 4.6 × 10 h ). The iron cations in
the catalysts were present mainly as Fe3 ions. Adsorbed
NO, N2O3, NO2, and nitrate species were observed when in-
troducing NO + O2 to Fe–MOR. They were bonded to the
iron sites. NH3 molecules were adsorbed on Brønsted acid
+
26. Yamaguchi, T., Appl. Catal. 61, 1 (1990).
2
2
2
3
7. Miyamoto, A., Kobayashi, K., Inomata, M., and Murakami, Y., J. Phys.
Chem. 86, 2945 (1982).
8. Janssen, F. J. J. G., van den Kerkhof, F. M. G., Bosch, H., and Ross,
J. R. H., J. Phys. Chem. 91, 5921 (1987).
9. Odriozola, J. A., Heinemann, H., Somorjai, G. A., Garcia de la Banda,
J. E., and Pereira, P., J. Catal. 119, 71 (1989).
+
+
sites to form NH ions. The NH ions on Fe–MOR were
4
4
active in reacting with NO + O2 at high temperatures, but
0. Ramis, G., Busca, G., Bregani, F., and Forzatti, P., Appl. Catal. 64, 259
those on the H–MOR were less active. The present results
(
1990).
+
indicate that NH , NO, and NO2 species play an important
4
31. Schramlmarth, M., Wokaun, A., andBaiker, A., J. Catal. 124, 86(1990).
role in the SCR reaction. A possible reaction scheme for 32. Chen, J. P., and Yang, R. T., J. Catal. 124, 411 (1990).
3
3. Went, G. T., Leu, L. J., Rosin, R. R., and Bell, A. T., J. Catal. 134, 492
NO reduction was proposed involving NO2 as an interme-
diate.
(
1992).
34. Ozkan, U. S., Cai, Y., and Kumthekar, M. W., J. Catal. 149, 375 (1994).
5. Ozkan, U. S., Cai, Y., and Kumthekar, M. W., J. Catal. 149, 390
3
(
1994).
ACKNOWLEDGMENT
3
6. Odenbrand, C. U. I., Bahamonde, A., Avila, P., and Blanco, J., Appl.
Catal. B 5 117 (1994).
This work was supported by the NSF under Grant CTS-0095909.
3
3
7. Topsøe, N.-Y., Topsøe, H., and Dumesic, J. A., J. Catal. 151, 226 (1995).
8. Topsøe, N.-Y., Dumesic, J. A., and Topsøe, H., J. Catal. 151, 241
(1995).
REFERENCES
39. Ramis, G., Yi, L., Busca, G., Turco, M., Kotur, E., and Willey, R. J.,
1
2
. Bosch, H., and Janssen, F., Catal. Today 2, 369 (1988).
. Busca, G., Lietti, L., Ramis, G., and Berti, F., Appl. Catal. B 18, 1 40. Chen, H.-Y., Voskoboinikov, T. V., and Sachtler, W. M. H., J. Catal.
J. Catal. 157, 523 (1995).
(1998).
180, 171 (1998).
3
4
. Forzatti, P., and Lietti, L., Heterogeneous Chem. Rev. 3, 33 (1996).
. Ito, E., Hultermans, R. J., Lugt, P. M., Burgers, M. H. W., Rigutto,
41. Chen, H.-Y., Voskoboinikov, T. V., and Sachtler, W. M. H., J. Catal.
186, 91 (1999).
M. S., van Bekkum, H., and van den Bleek, C. M., Appl. Catal. B 4, 95 42. Lobree, L. J., Hwang, I.-C., Reimer, J. A., and Bell, A. T., J. Catal. 186,
(1994).
242 (1999).
5
6
. Ito, E., Mergler, Y. J., Nieuwenhuys, B. E., Calis, H. P. A., van Bekkum,
H., and van den Bleek, C. M., J. Chem. Soc., Faraday Trans. 92, 1799
43. Lobree, L. J., Hwang, I.-C., Reimer, J. A., and Bell, A. T., Catal. Lett.
63, 233 (1999).
44. Feng, X., and Hall, W. K., J. Catal. 166, 368 (1997).
45. Long, R. Q., and Yang, R. T., J. Catal. 190, 22 (2000).
46. Long, R. Q., and Yang, R. T., J. Catal. 194, 80 (2000).
(1996).
. Kooten, W. E. J., Kaptein, J., van den Bleek, C. M., and Calis, H. P. A.,
Catal. Lett. 63, 227 (2000).