Organic Letters
Letter
(vide infra) suggest that electron transfer between *[fac-
Ir(ppy)3] and 2a is both exergonic and kinetically favorable.
Finally, the quantum yield (Φ) of the reaction was estimated by
chemical actinometry and a very low value was observed (Φ =
0.03) (see SI for details).
AUTHOR INFORMATION
■
Corresponding Author
ORCID
Based on our assays as well as literature reports, a mechanistic
proposal for the visible-light mediated oxidative alkylation of
styrenes is depicted in Scheme 4. After photoexcitation with
Notes
The authors declare no competing financial interest.
Scheme 4. Mechanistic Proposal
ACKNOWLEDGMENTS
■
Financial support by the NRW Graduate School of Chemistry
(to A.T.A.) and the Deutsche Forschungsgemeinschaft (Leibniz
Award) is gratefully acknowledged. We thank Dr. Sara
Cembellin-Santos, Santanu Singa (WWU Munster), and
̈
Hyung Yoon (University of Toronto) for helpful discussions.
REFERENCES
■
(1) (a) Smith, M. B.; March, J. March’s Advanced Organic Chemistry:
Reactions, Mechanisms, and Structure, 6th ed.; John Wiley & Sons, Inc.:
Hoboken, NJ, 2007. (b) Modern Carbonyl Chemistry; Otera, J., Ed.;
Wiley-VCH: Weinheim, 2000.
(2) (a) Dorwald, F. Z. Lead Optimization for Medicinal Chemists:
̈
Pharmacokinetic Properties of Functional Groups and Organic Compounds;
Wiley-VCH: Weinheim, 2012; pp 138−143. (b) Imamura, Y.; Narumi,
R.; Shimada, H. J. Enzyme Inhib. Med. Chem. 2007, 22, 105−109.
(c) Lee, K. Y.; Choi, J. H.; Kim, W.; Yan, X.-T.; Shin, H.; Jeon, J. H.;
Sung, S. H. Planta Med. 2016, 82, 645−649.
(3) Lan, X.-W.; Wang, N.-X.; Xing, Y. Eur. J. Org. Chem. 2017, 2017,
5821−5851.
(4) (a) Zhang, C.-P.; Wang, Z.-L.; Chen, Q.-Y.; Zhang, C.-T.; Gu, Y.-
C.; Xiao, J.-C. Chem. Commun. 2011, 47, 6632−6634. (b) Deb, A.;
Manna, S.; Modak, A.; Patra, T.; Maity, S.; Maiti, D. Angew. Chem., Int.
Ed. 2013, 52, 9747−9750. (c) Tomita, R.; Yasu, Y.; Koike, T.; Akita, M.
Angew. Chem., Int. Ed. 2014, 53, 7144−7148.
(5) (a) Su, Y.; Sun, X.; Wu, G.; Jiao, N. Angew. Chem., Int. Ed. 2013, 52,
9808−9812. (b) Majhi, B.; Kundu, D.; Ranu, B. C. J. Org. Chem. 2015,
80, 7739−7745. (c) Ding, Y.; Zhang, W.; Li, H.; Meng, Y.; Zhang, T.;
Chen, Q.-Y.; Zhu, C. Green Chem. 2017, 19, 2941−2944.
(6) (a) Wei, W.; Ji, J.-X. Angew. Chem., Int. Ed. 2011, 50, 9097−9099.
(b) Zhang, G.-Y.; Li, C.-K.; Li, D.-P.; Zeng, R.-S.; Shoberu, A.; Zou, J.-P.
Tetrahedron 2016, 72, 2972−2978.
(7) (a) Wei, W.; Liu, C.; Yang, D.; Wen, J.; You, J.; Suo, Y.; Wang, H.
Chem. Commun. 2013, 49, 10239−10241. (b) Chawla, R.; Singh, A. K.;
Yadav, L. D. S. Eur. J. Org. Chem. 2014, 2014, 2032−2036. (c) Liu, C.;
Ding, L.; Guo, G.; Liu, W. Eur. J. Org. Chem. 2016, 2016, 910−912.
(d) Yang, D.; Huang, B.; Wei, W.; Li, J.; Lin, G.; Liu, Y.; Ding, J.; Sun, P.;
Wang, H. Green Chem. 2016, 18, 5630−5634.
(8) (a) Cheng, K.; Huang, L.; Zhang, Y. Org. Lett. 2009, 11, 2908−
2911. (b) Yang, X.-H.; Wei, W.-T.; Li, H.-B.; Song, R.-J.; Li, J.-H. Chem.
Commun. 2014, 50, 12867−12869. (c) Zhang, F.; Du, P.; Chen, J.;
Wang, H.; Luo, Q.; Wan, X. Org. Lett. 2014, 16, 1932−1935. (d) Du, P.;
Li, H.; Wang, Y.; Cheng, J.; Wan, X. Org. Lett. 2014, 16, 6350−6353.
(e) Zhang, J.; Jiang, J.; Xu, D.; Luo, Q.; Wang, H.; Chen, J.; Li, H.; Wang,
Y.; Wan, X. Angew. Chem., Int. Ed. 2015, 54, 1231−1235. (f) Jiang, J.; Liu,
L.; Yang, L.; Shao, Y.; Cheng, J.; Bao, X.; Wan, X. Chem. Commun. 2015,
51, 14728−14731. (g) Cheng, J.-K.; Loh, T.-P. J. Am. Chem. Soc. 2015,
137, 42−45. (h) Lan, X.-W.; Wang, N.-X.; Zhang, W.; Wen, J.-L.; Bai, C.-
B.; Xing, Y.; Li, Y.-H. Org. Lett. 2015, 17, 4460−4463. (i) Lan, X.-W.;
Wang, N.-X.; Bai, C.-B.; Lan, C.-L.; Zhang, T.; Chen, S.-L.; Xing, Y. Org.
Lett. 2016, 18, 5986−5989. (j) Yi, N.; Zhang, H.; Xu, C.; Deng, W.;
Wang, R.; Peng, D.; Zeng, Z.; Xiang, J. Org. Lett. 2016, 18, 1780−1783.
(9) For a recent example using alkynes, see: Zhu, X.; Ye, C.; Li, Y.; Bao,
H. Chem. - Eur. J. 2017, 23, 10254−10258.
IV/ III
visible light, *fac-Ir(ppy)3 (E1/2
*
= −1.73 V vs SCE in
MeCN)12e engages in single electron transfer (SET) with the N-
(acyloxy)phthalimide 2 (Ered ≈ −1.30 V vs SCE in MeCN)10a
delivering the radical anion A. This open-shell species undergoes
N−O bond cleavage followed by decarboxylation to deliver a
reactive alkyl radical, which then adds to the styrene 1. Based on
the measured oxidation potentials of structurally related
secondary radicals (Eox = +0.37 V vs SCE in MeCN),14 we
propose that B engages in SET with [fac-Ir(ppy)3]+ (E1/2
=
IV/III
+0.77 V vs SCE in MeCN)12e to close the photocatalytic cycle
while giving the carbocation C. Further oxidation of this
intermediate by DMSO via a Kornblum-type mechanism affords
the corresponding α-alkyl-acetophenone product 3.15
In conclusion, we have disclosed an operationally simple, mild,
and efficient synthetic protocol to achieve the challenging
conversion of a wide variety of styrenes as well as N-
(acyloxy)phthalimides into α-alkyl-acetophenones in good
yields.16 Moreover, our developed protocol highlights the use
of low photocatalyst loadings and dimethylsulfoxide as a mild and
nontoxic oxidant. Overall, our method demonstrates the
powerful application of visible-light photocatalysis for the
conversion of simple organic substrates into carbonyl com-
pounds.
ASSOCIATED CONTENT
■
S
* Supporting Information
The Supporting Information is available free of charge on the
(10) (a) Okada, K.; Okamoto, K.; Oda, M. J. Am. Chem. Soc. 1988, 110,
8736−8738. (b) Okada, K.; Okamoto, K.; Morita, N.; Okubo, K.; Oda,
M. J. Am. Chem. Soc. 1991, 113, 9401−9402. (c) Schnermann, M. J.;
Experimental procedures, mechanistic experiments, and
C
Org. Lett. XXXX, XXX, XXX−XXX