Journal of the American Chemical Society
Page 4 of 6
produced (–)ꢀlundurine A (1) in 69% yield, while treatꢀ sis endeavors, serendipity also played a significant role
1
2
3
4
5
6
7
8
ment of 22 with iodomethane followed by sodium boroꢀ
hydride gave (–)ꢀlundurine B (2) in 71% yield. Interestꢀ
ingly, unlike stated in the isolation and previous syntheꢀ
ses, racemic and enantiopure 1 are crystalline solids and
we have also obtained the crystal structure of this natural
product, which confirms its absolute configuration and
the one of the whole family of natural compounds.
in the discovery of a new transformation in which a
double bond migrates by means of a homodienyl retroꢀ
ene / ene rearrangement, which streamlined the access to
this family of alkaloids.
ASSOCIATED CONTENT
Supporting Information. All procedures and characteriza-
tion data for compounds 1–3, 4a,f–6a,f, 9a,f–10a,f and 11–22.
The Supporting Information is available free of charge on the
ACS Publications website.
Scheme 7. Synthesis of lundurines A–Ca
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
O
AUTHOR INFORMATION
Corresponding Author
Funding Sources
No competing financial interests have been declared.
N
MeO
N
CO2Me
14b
19 (92%)
ACKNOWLEDGMENT
NaBH3CN
(±)-18 89%
THF / HCO2H
(–)-18 90%
We thank MINECO (Severo Ochoa Excellence Accreditation
2014-2018 (SEV-2013-0319), project CTQ2013-42106-P), the
European Research Council (Advanced Grant No. 321066), the
AGAUR (2014 SGR 818 and predoctoral fellowship to M.S.K.),
and the ICIQ Foundation. M.E.M. acknowledges the receipt of a
COFUND postdoctoral fellowship (Marie Curie program). We
also thank Dr. Fedor Miloserdov for helpful discussions and
the ICIQ X-ray diffraction unit for the crystal structures.
MeI, 25 ºC
25 to 40 ºC, 6 h
O
3 h
i. BH3•SMe2, THF
25 ºC, 3 h
N
N
MeO
MeO
ii. AcOH, 0 to
25 ºC, 0.5 h
N
N
CO2Me
CO2Me
(±)-3 80%
(–)-3 84%
18
(–)-Lundurine C (3)
Lawesson's
reagent
(±)-21 98%
(–)-21 96%
REFERENCES
toluene
90 °C, 1 h
S
N
S
O
S
Cl
Tol
N
iPr2NEt
1. Kam, T.ꢀS.; Yoganathan, K.; Chuah, C. H. Tetrahedron Lett.
1995, 36, 759–762.
2. Kam, T.ꢀS.; Lim, K.ꢀH.; Yoganathan, K.; Hayashi, M.; Komiyaꢀ
ma, K. Tetrahedron 2005, 60, 10739–10745.
MeO
MeO
CH2Cl2
–20 °C to 80 ºC, 4 h
N
N
(±)-22 75%
(–)-22 68%
CO2Me
CO2Me
22
21
3. (a) Awang, K.; Sévenet, T.; Païs, M.; Hadim, A. H. A. J. Nat.
Prod. 1993, 56, 1134–1139. (b) Yap, W.ꢀS.; Gan, C.ꢀY.; Low, Y.ꢀ
Y.; Choo, Y.ꢀM.; Etoh, T.; Hayahi, M.; Komiyama, K.; Kam, T.ꢀ
S. J. Nat. Prod. 2011, 74, 1309–1312.
4. (a) Schultz, E. E.; Pujanauski, B. G.; Sarpong, R. Org. Lett. 2012,
14, 648–651. (b) Hoshi, M.; Kaneko, O.; Nakajima, M.; Arai, S.;
Nishida, A. Org. Lett. 2014, 16, 768–771. (c) Arai, S.; Nakajima,
M.; Nishida A. Angew. Chem. Int. Ed. 2014, 53, 5569–5572. (d)
Jin, S.; Gong, J.; Qin, Y. Angew. Chem. Int. Ed. 2015, 54, 2228–
2231. (e) Nakajima, M.; Arai, S.; Nishida, A. Chem. Asian. J.
2015, 10, 1065–1070. (f) Huang, H.ꢀX.; Jin, S.ꢀJ.; Gong, J.;
Zhang, D.; Song, H.; Qin, Y. Chem. Eur. J. 2015, 21, 13284–
13290.
5. (a) Ferrer, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45,
1105–1109. (b) Ferrer, C.; Amijs, C. H. M.; Echavarren, A. M.
Chem. Eur. J. 2007, 13, 1358–1373. (c) Ferrer, C.; Escribanoꢀ
Cuesta, A.; Echavarren, A. M. Tetrahedron 2009, 65, 9015–9020.
6. (a) Barluenga, J.; Aznar, F.; Liz, R.; Bayod, M. J. Chem. Soc.,
Chem. Commun. 1984, 1427–1428. (b) Desmaële, D.; Champion,
N. Tetrahedron Lett. 1992, 33, 4447–4450. (c) Deyine, A.; Poirꢀ
ier, J.ꢀM; Duhamel, P. Synlett 2008, 260–262.
7. (a) Pandey, G.; Khamrai, J.; Mishra, A. Org. Lett. 2015, 17, 952–
955. (b) Zhang, Q.ꢀQ.; Xie, J.ꢀH.; Yang, X.ꢀH.; Xie, J.ꢀB.; Zhou,
Q.ꢀL. Org. Lett. 2012, 14, 6158–6161. (c) Güneꢁ, Y.; Polat, M. F.;
Sahin, E.; Fleming, F. F.; Altundas, R. J. Org. Chem. 2010, 75,
7092–7098.
i. MeI, 50 ºC, 2 h
ii. NaBH4, MeOH
0 to 25 °C, 2.5 h
(–)-2
72%
m-CPBA
CH2Cl2
N
–78 °C, 0.5 h
MeO
(–)-1 69%
N
CO2Me
(–)-Lundurine A (1)
(–)-Lundurine B
(2)
a CYLview depictions of the Xꢀray crystal structures of iodide salt
19 and lundurine A ((–)ꢀ1), with absolute configurations.
In conclusion, we have developed a unified approach
towards the synthesis of lundurines A–C, including the
first enantioselective total synthesis of lundurine C, takꢀ
ing advantage of a gold(I)ꢀcatalyzed 8ꢀendoꢀdig selecꢀ
tive hydroheteroarylation to build the polyhydroazocine
ring. Our synthesis of the lundurines is the shortest and
most efficient to date (12–14 steps from known chiral
alcohol 20f,21 6.6% overall yield for lundurine C and 3%
overall yield for lundurines A and B, >99:1 er) and is
perfectly suited to the preparation of analogues for bioꢀ
logical evaluation as well as for its extension to the synꢀ
thesis of other Kopsia alkaloids. Worthy of note is the
implementation of a practical chirality transfer in a comꢀ
plex tandem transformation and the new intramolecular
cyclopropanation of indoles by formation of a pyrazoꢀ
line by formal [3+2] cycloaddition in the presence of a
Lewis acid. Finally, as often encountered in total syntheꢀ
8. Štambaský, J.; Malkov, A. V.; Kočovský, P. J. Org. Chem. 2008,
73, 9148–9150.
9. (a) Muratore, M. E.; Holloway, C. A.; Pilling, A. W.; Storer, R.
I.; Trevitt, G.; Dixon, D. J. J. Am. Chem. Soc. 2009, 131, 10796–
10797. (b) Holloway, C. A.; Muratore, M. E.; Storer, R. I.; Dixon,
D. J. Org. Lett. 2010, 12, 4720–4723.
ACS Paragon Plus Environment