ACS Chemical Neuroscience
Research Article
(
20) Lorenzo, A., and Yankner, B. A. (1994) β-amyloid neurotoxicity
ACKNOWLEDGMENTS
■
requires fibril formation and is inhibited by congo red. Proc. Natl.
Acad. Sci. U. S. A. 91, 12243−12247.
This work was supported by the National Research
Foundation of Korea (NRF) grant funded by the Korean
government [NRF-2016R1A5A1009405 and NRF-
(21) Nie, Q., Du, X., and Geng, M.-Y. (2011) Small molecule
inhibitors of amyloid-β peptide aggregation as a potential therapeutic
2
2
0 1 7 R 1 A 2 B 3 0 0 2 5 8 5 ( t o M . H . L . ) ; N R F -
015R1D1A1A01060188 (to J.C.)] and the DGIST R&D
strategy for Alzheimer’s disease. Acta Pharmacol. Sin. 32, 545−551.
(22) Fulop, L., Mandity, I. M., Juhasz, G., Szegedi, V., Hetenyi, A.,
Weber, E., Bozso, Z., Simon, D., Benko, M., Kiraly, Z., and Martinek,
T. A. (2012) A Foldamer-dendrimer conjugate neutralizes synapto-
toxic β-amyloid oligomers. PLoS One 7, e39485.
Program (18-BD-0403) (to J.C.).
REFERENCES
(23) Jones, M. R., Service, E. L., Thompson, J. R., Wang, M. C. P.,
■
Kimsey, I. J., DeToma, A. S., Ramamoorthy, A., Lim, M. H., and Storr,
T. (2012) Dual-function triazole−pyridine derivatives as inhibitors of
metal-induced amyloid-β aggregation. Metallomics 4, 910−920.
(
1) Jakob-Roetne, R., and Jacobsen, H. (2009) Alzheimer’s disease:
from pathology to therapeutic approaches. Angew. Chem. Int. Ed. 48,
3
(
030−3059.
2) Kepp, K. P. (2012) Bioinorganic chemistry of Alzheimer’s
disease. Chem. Rev. 112, 5193−5239.
3) Faller, P., and Hureau, C. (2009) Bioinorganic chemistry of
copper and zinc ions coordinated to amyloid-β peptide. Dalton Trans.
, 1080−1094.
4) Hureau, C., and Faller, P. (2009) Aβ-mediated ROS production
(24) Choi, J.-S., Braymer, J. J., Nanga, R. P., Ramamoorthy, A., and
Lim, M. H. (2010) Design of small molecules that target metal−Aβ
species and regulate metal-induced Aβ aggregation and neurotoxicity.
Proc. Natl. Acad. Sci. U. S. A. 107, 21990−21995.
(
(25) Ji, Y., Lee, H. J., Kim, M., Nam, G., Lee, S. J. C., Cho, J., Park,
7
(
C.-M., and Lim, M. H. (2017) Strategic design of 2,2′-bipyridine
derivatives to modulate metal−amyloid-β aggregation. Inorg. Chem.
by Cu ions: structural insights, mechanisms and relevance to
Alzheimer’s disease. Biochimie 91, 1212−1217.
(
ions in the self-assembly of the Alzheimer’s amyloid-β peptide. Inorg.
Chem. 52, 12193−12206.
(
5
(
6, 6695−6705.
26) Feng, Y., and Wang, X. (2012) Antioxidant therapies for
Alzheimer’s disease. Oxid. Med. Cell. Longevity 2012, 472932.
27) de Oliveira, B. F., Veloso, C. A., Nogueira-Machado, J. A., de
Moraes, E. N., dos Santos, R. R., Cintra, M. T., and Chaves, M. M.
2012) Ascorbic acid, alpha-tocopherol, and beta-carotene reduce
5) Faller, P., Hureau, C., and Berthoumieu, O. (2013) Role of metal
(
6) Markesbery, W. R. (1997) Oxidative stress hypothesis in
(
Alzheimer’s disease. Free Radic. Biol. Med. 23, 134−147.
7) Beck, M. W., Pithadia, A. S., DeToma, A. S., Korshavn, K. J., and
Lim, M. H. (2014) Ligand design in medicinal inorganic chemistry
Storr, T., Ed.), chapter 10, pp 257−286, Wiley, Chichester.
8) Derrick, J. S., and Lim, M. H. (2015) Tools of the trade:
oxidative stress and proinflammatory cytokines in mononuclear cells
(
of Alzheimer’s disease patients. Nutr. Neurosci. 15, 244−251.
(28) Wu, W., Lei, P., Liu, Q., Hu, J., Gunn, A. P., Chen, M., Rui, Y.-
(
F., Su, X., Xie, Z., Zhao, Y.-F., Bush, A. I., and Li, Y. (2008)
Sequestration of copper from β-amyloid promotes selective lysis by
cyclen-hybrid cleavage agents. J. Biol. Chem. 283, 31657−31664.
(
investigations into design strategies of small molecules to target
components in Alzheimer’s disease. ChemBioChem 16, 887−898.
(
(29) Hamaguchi, T., Ono, K., and Yamada, M. (2006) Anti-
9) DeToma, A. S., Salamekh, S., Ramamoorthy, A., and Lim, M. H.
amyloidogenic therapies: strategies for prevention and treatment of
(
2012) Misfolded proteins in Alzheimer’s disease and type II diabetes.
Chem. Soc. Rev. 41, 608−621.
10) Savelieff, M. G., Lee, S., Liu, Y., and Lim, M. H. (2013)
Alzheimer’s disease. Cell. Mol. Life Sci. 63, 1538−1552.
(30) Schugar, H., Green, D. E., Bowen, M. L., Scott, L. E., Storr, T.,
(
Bohmerle, K., Thomas, F., Allen, D. D., Lockman, P. R., Merkel, M.,
Thompson, K. H., and Orvig, C. (2007) Combating Alzheimer’s
disease with multifunctional molecules designed for metal passivation.
Angew. Chem., Int. Ed. 46, 1716−1718.
Untangling amyloid-β, tau, and metals in Alzheimer’s disease. ACS
Chem. Biol. 8, 856−865.
(
11) Kotler, S. A., Walsh, P., Brender, J. R., and Ramamoorthy, A.
(
2014) Differences between amyloid-β aggregation in solution and on
(31) Dickens, M. G., and Franz, K. J. (2010) A prochelator activated
the membrane: insights into elucidation of the mechanistic details of
Alzheimer’s disease. Chem. Soc. Rev. 43, 6692−6700.
(
H. (2017) Towards an understanding of amyloid-β oligomers;
characterization, toxicity mechanism, and inhibitors. Chem. Soc. Rev.
by hydrogen peroxide prevents metal-induced amyloid-β aggregation.
ChemBioChem 11, 59−62.
12) Lee, S. J. C., Nam, E., Lee, H. J., Savelieff, M. G., and Lim, M.
(32) Lincoln, K. M., Richardson, T. E., Rutter, L., Gonzalez, P.,
Simpkins, J. W., and Green, K. N. (2012) An N-heterocyclic amine
chelate capable of antioxidant capacity and amyloid disaggregation.
ACS Chem. Neurosci. 3, 919−927.
4
(
(
6, 310−323.
13) Savelieff, M. G., DeToma, A. S., Derrick, J. S., and Lim, M. H.
2014) The ongoing search for small molecules to study metal-
associated amyloid-β species in Alzheimer’s disease. Acc. Chem. Res.
7, 2475−2482.
14) Shearer, J., Callan, P. E., Tran, T., and Szalai, V. A. (2010) Cu
(33) Sharma, A. K., Pavlova, S. T., Kim, J., Finkelstein, D., Hawco,
N. J., Rath, N. P., Kim, J., and Mirica, L. M. (2012) Bifunctional
compounds for controlling metal-mediated aggregation of the Aβ42
peptide. J. Am. Chem. Soc. 134, 6625−6636.
4
(
(34) Lee, S., Zheng, X., Krishnamoorthy, J., Savelieff, M. G., Park, H.
K-edge X-ray absorption spectroscopy reveals differential copper
coordination within amyloid-β oligomers compared to amyloid-β
monomers. Chem. Commun. 46, 9137−9139.
M., Brender, J. R., Kim, J. H., Derrick, J. S., Kochi, A., Lee, H. J., Kim,
C., Ramamoorthy, A., Bowers, M. T., and Lim, M. H. (2014) Rational
design of a structural framework with potential use to develop
chemical reagents that target and modulate multiple facets of
Alzheimer’s disease. J. Am. Chem. Soc. 136, 299−310.
(35) Mao, F., Yan, J., Li, J., Jia, X., Miao, H., Sun, Y., Huang, L., and
Li, X. (2014) New multi-target-directed small molecules against
Alzheimer’s disease: a combination of resveratrol and clioquinol. Org.
Biomol. Chem. 12, 5936−5944.
(36) Gonzalez, P., da Costa, V. C. P., Hyde, K., Wu, Q., Annunziata,
O., Rizo, J., Akkaraju, G., and Green, K. N. (2014) Bimodal-hybrid
heterocyclic amine targeting oxidative pathways and copper mis-
regulation in Alzheimer’s disease. Metallomics 6, 2072−2082.
(37) Derrick, J. S., Kerr, R. A., Nam, Y., Oh, S. B., Lee, H. J., Earnest,
K. G., Suh, N., Peck, K. L., Ozbil, M., Korshavn, K. J., Ramamoorthy,
A., Prabhakar, R., Merino, E. J., Shearer, J., Lee, J.-Y., Ruotolo, B. T.,
(
15) Peck, K. L., Clewett, H. S., Schmitt, J. C., and Shearer, J. (2013)
Copper ligation to soluble oligomers of the English mutant of the
amyloid-β peptide yields a linear Cu(I) site that is resistant to O2
oxidation. Chem. Commun. 49, 4797−4799.
(
16) Smith, D. G., Cappai, R., and Barnham, K. J. (2007) The redox
chemistry of the Alzheimer’s disease amyloid-β peptide. Biochim.
Biophys. Acta 1768, 1976−1990.
(
17) Perry, G., Cash, A. D., and Smith, M. A. (2002) Alzheimer
disease and oxidative stress. J. Biomed. Biotechnol. 2, 120−123.
18) Sayre, L. M., Perry, G., and Smith, M. A. (2008) Oxidative
stress and neurotoxicity. Chem. Res. Toxicol. 21, 172−188.
19) Alzheimer’s Association (2017) 2017 Alzheimer’s disease facts
and figures. Alzheimers Dementia 13, 325−373.
(
(
H
ACS Chem. Neurosci. XXXX, XXX, XXX−XXX