Iron-Catalyzed Aminoacetone Oxidation
Chem. Res. Toxicol., Vol. 14, No. 9, 2001 1329
SSAOs, may contribute significantly to oxidative stress
triggered by diabetes.
(20) Oteiza, P. I., Kleinman, C. G., Demasi, M., and Bechara, E. J . H.
(1995) 5-Aminolevulinic acid induces iron release fron ferritin.
Arch. Biochem. Biophys. 316, 607-611.
(
21) Bradford, M. M. (1976) A rapid and sensitive method for the
quantitation of microgram qunatities of protein utilizing the
principle of protein-dye binding. Anal. Biochem. 72, 248-254.
22) Hepworth, J . D. (1976) Aminoacetone semicarbazone hydrochlo-
ride. Org. Synth. 45, 1-3.
Ack n ow led gm en t. This work was supported by
grants from the Funda c¸ a˜ o de Amparo a` Pesquisa do
Estado de S a˜ o Paulo (FAPESP), the Programa de Apoio
a N u´ cleos de Excel eˆ ncia (PRONEX), the Conselho Na-
cional de Desenvolvimento Cient ´ı fico e Tecnol o´ gico (CNPq),
and the von Humboldt Foundation. We thank Dr. Brian
Bandy and Dr. Al ´ı cia Kowaltowski for reading the
manuscript. Samples of human CuZnSOD were kindly
provided by Dr. Francisco Laurindo from the Instituto
do Cora c¸ a˜ o (INCOR).
(
(
23) Deng, Y., and Yu, P. H. (1999) Assessment of the deamination of
aminoacetone, an endogenous substrate for semicarbazide-sensi-
tive amine oxidase. Anal. Biochem. 270, 97-102.
24) Robinson, J ., and Cooper, J . M. (1970) Method of determining
oxygen concentrations in biological media, suitable for calibration
of the oxygen electrode. Anal. Biochem. 33, 390-399.
25) Chalmers, J ., and Lyles, G. A. (1992) The metabolism of ami-
noacetone to methylglyoxal by semicarbazide-sensitive amine
oxidase in human umbilical artery. Biochem. Pharmacol. 43,
(
(
1
409-1414.
Refer en ces
(
(
(
(
(
(
26) Chalmers, J ., and Lyles, G. A. (1995) Aminoacetone metabolism
by semicarbazide-sensitive amine oxidase in rat aorta. Biochem.
Pharmacol. 49, 416-419.
27) Miller, D. M., Buettner, G. R., and Aust, S. D. (1990) Transitions
metals as catalysts of “autoxidation” reactions. Free Radical Biol.
Med. 8, 95-108.
28) Chern, G. I., and Fillipo, J . S., J r. (1977) The reaction of
superoxide with hydrizines, hydrazones, and related compounds.
J . Org. Chem. 42, 178-179.
29) Mashino T., and Fridovich, I. (1987) Superoxide radical initiates
the autoxidation of dihydroxyacetone. Arch. Biochem. Biophys.
(
1) Bird, M. I., Nunn, P. B., and Lord, L. A. J . (1984) Formation of
glycine and aminoacetone from L-threonine by rat liver mitochon-
dria. Biochim. Biophys. Acta, 802, 229-236.
2) Kuhner, U., Busse, M., and Buchinger, G. (1974) Cri-du-Chat
syndrome with an increased level of proline and threonine. Z.
Kinderheilkd. 117, 259-264.
(
(
(
(
3) Reddi, O. S. (1978) Threoninemia - a new metabolic defect. J .
Pediatr. 93, 814-815.
4) Kalapos, M. P. (1994) Methylglyoxal toxicity in mammals. Toxicol.
Lett. 73, 3-24.
2
54, 547-551.
5) Tressel, T., Thompson, R., Zieske, L. R., Menendez, M. I. T. S.,
and Davis, L. (1986) Interaction between L-threonine dehydro-
genase and aminoacetone synthetase and mechanism of aminoac-
etone production. J . Biol. Chem. 261, 16428-16437.
6) Ray, S., and Ray, M. (1983) Formation of methylglyoxal from
aminoacetone by amine oxidase from goat plasma. J . Biol. Chem.
30) McCord, J . M., and Fridovich, I. (1968) The reduction of cito-
chrome c by milk xanthine oxidase. J . Biol. Chem. 243, 5753-
5
760.
31) J affe, E. K., and Rajagopalan, J . S. (1990) Nuclear magnetic
resonance studies of 5-aminolevuliniate demonstrate multiple
forms in aqueous solution. Bioorg. Chem. 18, 381-394.
(32) Buettner, G. R. (1987) Spin trapping: ESR parameters of spin
adducts. Free Radical Biol. Med. 3, 259-303.
(33) Monteiro, H. P., Vile, G. F., and Winterbourn, C. C. (1989) Release
of iron from ferritin by semiquinone, anthracycline, bipyridyl, and
nitroaromatic radicals. Free Radical Biol. Med. 6, 587-591.
(34) Rocha, M. E. M., Ferreira, A. M. D. C., and Bechara, E. J . H.
(2000) Roles of phosphate and an enoyl radical in ferritin iron
mobilization by 5-aminolevulinic acid. Free Radical Biol. Med.
29, 1272-1279.
(
2
58, 3461-3462.
(
7) Lyles, G. A. (1996) Mammalian plasma and tissue-bound semi-
carbazide-sensitive amine oxidases: biochemical, pharmacological
and toxicological aspects. Int. J . Biochem. Cell Biol. 28, 259-274.
8) Elliott, W. H. (1959) Aminoacetone: its isolation and role in
metabolism. Nature 183, 1051.
9) Kalapos, M. P. (1999) Methylglyoxal in living organism: chem-
istry, biochemistry, toxicology and biological implications. Toxicol.
Lett. 110, 145-175.
(
(
(
10) Meyer, U. A., Schuurmans, M. M., and Lindberg, R. L. P. (1998)
Acute porphyries: pathogenesis of neurological manifestations.
Semin. Liver Dis. 18, 43-52.
(35) Wallace, W. J ., Houtchens, R. A., Maxwell, J . C., and Caughey,
W. S. (1982) Mechanism of autooxidation for hemoglobins and
myoglobins. Promotion of superoxide production by protons and
anions. J . Biol. Chem. 257, 4966-4977.
(
11) Bruice, P. Y. (1990) Role of the acidity of the ketone in determining
the mechanism of enolization via proton abstraction from ketone,
carbinolamine, or imine. Catalysis of the enolization of 2,4-
pentanedione and 3-methyl-2,4-pentanedione by oxyanions and
by primary, secondary, and tertiary amines. J . Am. Chem. Soc.
(
36) Aust, S. D. (1995) Ferritin as a source of iron and protection from
iron-induced toxicities. Toxicol. Lett. 82-83, 941-944.
37) Ryter, S. W., and Tyrrell, R. M. (2000) The heme synthesis and
degradation pathways: Role in oxidant sensitivity - Heme
oxygenase has both pro- and antioxidant properties. Free Radical
Biol. Med. 28, 289-309.
(
1
12, 7361-7368.
(
12) Monteiro, H. P., Abdalla, D. S. P., Augusto, O., and Bechara, E.
J . H. (1989) Free radical generation during δ-aminolevulinic acid
autoxidation: induction by hemoglobin and connections with
porphyrinpathies. Arch. Biochem. Biophys. 271, 206-216.
13) Hermes-Lima, M., Valle, V. G. R., Vercesi, A. E., and Bechara,
E. J . H. (1991) Damage to rat liver mitochondria promoted by
δ-aminolevulinic acid-generated reactive oxygen species: connec-
tions with acute intermittent porphyria and lead-poisoning.
Biochim. Biophys. Acta 1056, 57-63.
(
(
(
(
(
38) Urata, G., and Granick, S. (1963) Biosynthesis of R-aminoketones
and the metabolism of aminoacetone. J . Biol. Chem. 238, 811-
8
20.
39) Wolff, S. P., J iang, Z. Y., and Hunt, V. (1991) Protein glycation
and oxidative stress in diabetes mellitus and ageing. Free Radical
Biol. Med. 10, 339-352.
(
40) Ninfali, P., Perini, M. P., Bresoni, N., Aluigi, G., Cambiaggi, C.,
Ferrali, M., and Pompella, A. (2000) Iron release and oxidant
damage in human myoblasts by divicine. Life Sci. 66, 85-91.
41) Padiglia, A., Medda, R., Lorrai, A., Biggio, G., Sanna, E., and
Floris, G. (1997) Modulation of 6-hydroxydopamine oxidation by
various proteins. Biochem. Pharmacol. 53, 1065-1068.
42) Mossine, V. V., Linetsky, M., Glinsky, G. V., Ortwerth, B. J ., and
Feather, M. S. (1999) Superoxide free radical generation by
Amadori compounds: the role of acyclic forms and metal ions.
Chem. Res. Toxicol. 12, 230-236.
(
14) Bechara, E. J . H. (1996) Oxidative stress in acute intermittent
porphyria and lead poisoning may be triggered by 5-aminole-
vulinic acid. Braz. J . Med. Biol. Res. 29, 841-851.
(
15) Demasi, M., Penatti, C. A. A., DeLucia, R., and Bechara, E. J . H.
(1996) The prooxidant effect of 5-aminolevulinic acid in the brain
tissue of rats: implications in neuropsychiatric manifestations
in porphyrias. Free Radical Biol. Med. 20, 291-299.
16) Douki, T., Onuki, J ., Medeiros, M. H. G., Bechara, E. J . H., Cadet,
J ., and Di Mascio, P. (1998) Hydroxyl radicals are involved in
the oxidation of isolated and cellular DNA bases by 5-aminole-
vulinic acid. FEBS Lett. 428, 93-96.
(
(
(
(
43) Nickander, K. K., McPhee, B. R., Low, P. A., and Tritschler, H.
(1996) Alpha-lipoic acid: antioxidant potency against lipid per-
oxidation of neural tissues in vitro and implications for diabetic
neuropathy. Free Radical Biol. Med. 21, 631-639.
(
17) Hiraku, Y., Sugimoto, J ., Yamaguchi, T., and Kawanishi, S. (1999)
Oxidative Dna damage induced by aminoacetone, an amino acid
metabolite. Arch. Biochem. Biophys. 365, 62-70.
44) Young, I. S., Tate, S., Lightbody, J . H., McMaster, D., and Trimble,
E. R. (1995) The effects of desferrioxamine and ascorbate on
oxidative stress in the streptozotocin diabetic rat. Free Radical
Biol. Med. 18, 833-840.
(
18) Niederau, C. (1999) Diabetes mellitus in hemochromatosis. Z.
Gastroenterol. 1 (Suppl.), 22-32.
45) Okunade, G. W., Odunuga, O. O., and Olorunsogo, O. O. (1999)
Iron-induced oxidative stress in erythrocyte membranes of non-
insulin-dependent diabetic Nigerians. Biosci. Rep. 19, 1-9.
(
19) Monteiro, H. P., Abdalla, D. S. P., Faljoni-Al a` rio, A., and Bechara,
E. J . H. (1986) Generation of active oxygen species during coupled
autoxidation of oxyhemoglobin and δ-aminolevulinic acid. Bio-
chim. Biophys. Acta 881, 100-106.
TX015526R