Please do not adjust margins
RSC Advances
Page 5 of 6
DOI: 10.1039/C5RA23428J
Journal Name
ARTICLE
Scheme 2 could be easily oxidized by dioxygen dissolved in selective oxidation from benzylamine to N-BIBL. The results
acetonitrile to generate benzaldehyde. At meantime, the suggest the great potential of this 3D highly ordered
electron in conduction band of TiO2 would also complete the hierarchical structure in photocatalytic fine chemical
transfer to O species for the recovery of Ti(IV) center. After conversions. And this work offered the great opportunities to
explore the promising prospect of the rational designed
complex ordered nanostructures and their diverse applications
in photocatalysis.
Acknowledgements
This work was financially supported by the Singapore National
Research Foundation (NRF-RF2009-04).
Notes and references
1 B. O’Regan and M. Gratzel, Nature, 1991, 353, 737.
2 A. Fujishima and K. Honda, Nature, 1972, 238, 37.
3 (a) V. Subramanian, A. Karki, K. I. Gnanasekar, F. P. Eddy and B. Rambabu, J.
Power Sources, 2006, 159, 186. (b) Y. X. Tang, Y. Y. Zhang, J. Y. Deng, J. Q. Wei, H. L.
Tam, B. K. Chandran, Z. L. Dong, Z. Chen and X. D. Chen, Adv. Mater., 2014, 26,
6111.
4 N. Wu, S. Wang and I. A. Rusakova, Science, 1999, 285, 1375.
5 X. B. Chen and S. S. Mao, Chem. Rev., 2007, 107, 2891.
Scheme 2. Proposed mechanism for the generation of N-BIBL from benzylamine by
rutile TiO2 nano-flower hierarchical structures under visible light irradiation.
this, the nucleophilic attack on benzaldehyde by the unreacted
benzylamine would yield the corresponding N-BIBL. Thus the
reaction occurred with high selectivity and high yield of target
product. The enhanced photocatalytic activity of the rutile
TiO2 nano-flower structure can be attributed to their three-
dimensional (3D) hierarchical nanostructures and ordered
single-crystalline rutile nanorods as the building blocks
exposed (110) facets. 3D hierarchical nanostructures are
usually considered to have advanced structures than 0D and
1D architectures because of the diffusion of active sites at
different length scales on the surface of 3D nanostructures.
And the single-crystalline rutile nanorods facilitate the
vectorial transfer of the photo-generated electrons inside TiO2
from conduction band to the surface active sites and shorten
the mean diffusion length of the electrons (Scheme 2), this
advanced nanostructure facilitate the charge separation and
transfer, avoiding the excessive charge recombination which
occurred in P25 due to randomness. So the rutile TiO2
nanoflower exhibits superior activity in the oxidation process
than P25. Furthermore, The complex of the 3D hierarchical
nanostructures allow the multiple light reflections and
scatterings, leading to improved light absorption by this
nanostructure, all of these factors mentioned above resulted
in the promotion of the reactivity by TiO2 nano-flower
structure in the selective photocatalytic oxidation from
benzylamine to N-BIBL.
6 H. G. Yang, C. H. Sun, S. Z. Qiao, J. Zou, G. Liu, S. C. Smith, H. M. Cheng and G. Q.
Lu, Nature, 2008, 453, 638.
7 S.W. Liu, J. G. Yu andM. Jaroniec, J. Am. Chem. Soc., 2010, 132, 11914.
8 A. Selloni, Nat. Mater., 2008, 7, 613.
9 X. Y. Ma, Z. G. Chen, S. B. Hartono, H. B. Jiang, J. Zou, S. Z. Qiao and H. G. Yang,
Chem. Commun., 2010, 46, 6608.
10 J. Fang, F. Wang, K. Qian, H. Z. Bao, Z. Q. Jiang and W. X. Huang, J. Phys. Chem. C,
2008, 112, 18150.
11 B. Liu and E. S. Aydil, J. Am. Chem. Soc., 2009, 131, 3985.
12 X. J. Feng, K. Shankar, O. K. Varghese, M. Paulose, T. J. Latempa and C. A.
Grimes, Nano Lett., 2008, 8, 3781.
13 E. Hosono, S. Fujihara and T. Kimura, Electrochim. Acta, 2004, 49, 2287.
14 L. Xiao, Y. Yang, J. Yin, Q. Li and L. Zhang, J. Power Sources, 2009, 194, 1089.
15 F. Lu, W. Cai and Y. Zhang, Adv. Funct. Mater., 2008, 18, 1047.
16 (a) X. F. Yang, J. L. Zhuang, X. Y. Li, D. H. Chen, G. F. Ouyang, Z. Q. Mao, Y. X. Han,
Z. H. He, C. L. Liang, M. M. Wu and J. C. Yu, ACS Nano, 2009,
Y. X. Tang, X. F. Liu, Z. L. Dong, H. H. Hng, Z. Chen, T. C. Sum, X. D. Chen, Small,
2013, , 996.
3, 1212. (b) Y. Y. Zhang,
9
17 X. F. Yang, J. Chen, L. Gong, M. M. Wu and J. C. Yu, J. Am. Chem. Soc., 2009, 131,
12048.
18 X. F. Yang, C. J. Jin, C. L. Liang, D. H. Chen, M. M. Wu and J. C. Yu, Chem.
Commn., 2011, 47, 1184.
19 W. G. Su, J. Zhang, Z. C. Feng, T. Chen, P. L. Ying and C. Li, J. Phys. Chem. C, 2008,
112, 7710.
20 P. Chinnamuthu, A. Mondal, N. K. Singh, J. C. Dhar, K. K. Chattopadhyay and S.
Bhattacharya, J. Appl. Phys., 2012, 112, 054315.
21 K. S. W. Sing, D. H. Everett, R. A. W. Haul, L. Moscou, R. A. Pierotti, J. Rouquerol
and T. Siemieniewska, Pure Appl. Chem., 1985, 57, 603.
22 C. H. Wang, X. T. Zhang, C. L. Shao, Y. L. Zhang, J. K. Yang, P. P. Sun, X. P. Liu, H.
Liu, Y. C. Liu, T. F. Xie and D. J. Wang, J Colloid Interface Sci., 2011, 363, 157.
23 P. M. Oliver, G. M. Watson, E. T. Kelsey and C. P. Stephen, J. Mater. Chem.,
1997, 7, 563.
24 S. I. Murahashi, Angew. Chem. Int. Ed. Engl., 1995, 34, 2443.
25 X. J. Lang, H. W. Ji, C. C. Chen, W. H. Ma and J. C. Zhao, Angew. Chem. Int. Ed.,
2011, 50, 3934.
26 X. J. Lang, W. R. Leow, J. C. Zhao and X. D. Chen, Chem. Sci., 2015, 6, 1075.
27 F. Parrino, A. Ramakrishnan and H. Kisch, Angew. Chem. Int. Ed., 2008, 47, 7107.
28 Y. Shiraishi, N. Saito and T. Hirai, J. Am. Chem. Soc., 2005, 127, 12820.
29 S. H. Zhan, D. R. Chen, X. L. Jiao and Y. Song, Chem. Commn., 2007, 2043.
30 Q. J. Xiang, J. G. Yu and M. Jaroniec, Chem. Commn., 2011, 47, 4532.
Conclusions
To summarize, nano-flower like rutile TiO2 hierarchical
structures have been synthesized by a one-pot solvent-thermal
method. And the building blocks of such nano-flower
structures are single-crystalline rutile TiO2 nanorods with their
growth along [001] axis and exposed (110) facet on nanarods’
side walls. Owing to this hierarchical nanostructure, this rutile
TiO2 displayed enhanced photocatalytic activity for the
This journal is © The Royal Society of Chemistry 20xx
J. Name., 2013, 00, 1-3 | 5
Please do not adjust margins