10.1002/anie.201810119
Angewandte Chemie International Edition
COMMUNICATION
[17]
[18]
Z. Xia, F. Leonardi, M. Gobbi, Y. Liu, V. Bellani, A. Liscio, A. Kovtun,
R. Li, X. Feng, E. Orgiu, et al., ACS Nano 2016, 10, 7125–7134.
Q. H. Wang, Z. Jin, K. K. Kim, A. J. Hilmer, G. L. C. Paulus, C.-J.
Shih, M.-H. Ham, J. D. Sanchez-Yamagishi, K. Watanabe, T.
Taniguchi, et al., Nat. Chem. 2012, 4, 724–732.
substituted by carboxylates via the Mitsunobu reaction, with the
on-surface reaction products being confirmed by a series of
techniques including XPS, SERS and GERS. The spatiotemporal
control was achieved using UV light–initiated decomposition of
the azodicarboxylate reagent. Employing a photomask, we were
able to couple the reduction and substitution reaction within one
sample, creating arbitrary patterns of functionalized and pristine
graphene. These structures can be prepared with a spatial
resolution of approximately 2 µm. The presented approach
provides a simple, efficient and scalable method for spatially
resolved graphene functionalization.
[19]
[20]
[21]
M. Hirtz, A. Oikonomou, T. Georgiou, H. Fuchs, A. Vijayaraghavan,
Nat. Commun. 2013, 4, 2591.
J. Li, M. Li, L.-L. Zhou, S.-Y. Lang, H.-Y. Lu, D. Wang, C.-F. Chen, L.-
J. Wan, J. Am. Chem. Soc. 2016, 138, 7448–7451.
U. Bog, A. de los Santos Pereira, S. L. Mueller, S. Havenridge, V.
Parrillo, M. Bruns, A. E. Holmes, C. Rodriguez-Emmenegger, H.
Fuchs, M. Hirtz, ACS Appl. Mater. Interfaces 2017, 9, 12109–12117.
M. Hirtz, S. Varey, H. Fuchs, A. Vijayaraghavan, ACS Appl. Mater.
Interfaces 2016, 8, 33371–33376.
W. M. Wang, N. Stander, R. M. Stoltenberg, D. Goldhaber-Gordon, Z.
Bao, ACS Nano 2010, 4, 6409–6416.
R. K. Puddy, P. H. Scard, D. Tyndall, M. R. Connolly, C. G. Smith, G.
a. C. Jones, A. Lombardo, A. C. Ferrari, M. R. Buitelaar, Appl. Phys.
Lett. 2011, 98, 133120.
D. Ye, S.-Q. Wu, Y. Yu, L. Liu, X.-P. Lu, Y. Wu, Appl. Phys. Lett.
2014, 104, 103105.
Y. Stubrov, A. Nikolenko, V. Strelchuk, S. Nedilko, V. Chornii,
Nanoscale Res. Lett. 2017, 12, 297.
Z. Sun, C. L. Pint, D. C. Marcano, C. Zhang, J. Yao, G. Ruan, Z. Yan,
Y. Zhu, R. H. Hauge, J. M. Tour, Nat. Commun. 2011, 2, 559.
R. D. Piner, J. Zhu, F. Xu, S. Hong, C. A. Mirkin, Science 1999, 283,
661–663.
[22]
[23]
[24]
Experimental Section
[25]
[26]
[27]
[28]
The experimental details can be found in the Supporting
Information.
[29]
[30]
M. Jaschke, H.-J. Butt, Langmuir 1995, 11, 1061–1064.
T. Hallam, N. C. Berner, C. Yim, G. S. Duesberg, Adv. Mater.
Interfaces 2014, 1, 1400115.
Acknowledgements
[31]
[32]
H. Liu, S. Ryu, Z. Chen, M. L. Steigerwald, C. Nuckolls, L. E. Brus, J.
Am. Chem. Soc. 2009, 131, 17099–17101.
G. Bottari, M. Á. Herranz, L. Wibmer, M. Volland, L. Rodríguez-Pérez,
D. M. Guldi, A. Hirsch, N. Martín, F. D’Souza, T. Torres, Chem. Soc.
Rev. 2017, 46, 4464–4500.
A. Jorio, M. S. Dresselhaus, R. Saito, G. Dresselhaus, Raman
Spectroscopy in Graphene Related Systems, Wiley-VCH, Weinheim,
2011.
L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus,
Phys. Rep. 2009, 473, 51–87.
A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F.
Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, et al., Phys.
Rev. Lett. 2006, 97, 187401.
D. Ferrah, J. Penuelas, C. Bottela, G. Grenet, A. Ouerghi, Surf. Sci.
2013, 615, 47–56.
V. Valeš, P. Kovaříček, M. Fridrichová, X. Ji, X. Ling, J. Kong, M. S.
Dresselhaus, M. Kalbáč, 2D Mater. 2017, 4, 025087.
P. Kovaříček, V. Vrkoslav, J. Plšek, Z. Bastl, M. Fridrichová, K.
Drogowska, M. Kalbáč, Carbon 2017, 118, 200–207.
D. Dasler, R. A. Schäfer, M. B. Minameyer, J. F. Hitzenberger, F.
Hauke, T. Drewello, A. Hirsch, J. Am. Chem. Soc. 2017, 139, 11760–
11765.
Authors acknowledge the support provided by the Czech Science
Foundation (project No. 18-09055Y) and COST project
(LTC18039). We also acknowledge assistance provided by the
Research Infrastructure NanoEnviCz, supported by the Ministry
of Education, Youth and Sports of the Czech Republic under
[33]
project
no.
LM2015073
and
project
no.
[34]
[35]
CZ.02.1.01/0.0/0.0/16_013/0001821.
Keywords: graphene • patterned functionalization • Raman
spectroscopy • Mitsunobu reaction • photochemistry
[36]
[37]
[38]
[39]
[1]
[2]
A. K. Geim, K. S. Novoselov, Nat. Mater. 2007, 6, 183–191.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.
Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666–669.
K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I.
Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, Nature
2005, 438, 197–200.
[3]
[40]
[41]
[42]
C. Kiang Chua, M. Pumera, Chem. Soc. Rev. 2014, 43, 291–312.
S. Park, R. S. Ruoff, Nat. Nanotechnol. 2010, 5, 309–309.
J. Liu, H. Jeong, J. Liu, K. Lee, J.-Y. Park, Y. H. Ahn, S. Lee, Carbon
2010, 48, 2282–2289.
S. T. Reid, in Photochem. Vol. 5 (Ed.: D. Bryce-Smith), The Royal
Society Of Chemistry, 1974, pp. 638–688.
M. Kalbac, O. Frank, L. Kavan, Carbon 2012, 50, 3682–3687.
S. D. Costa, J. Ek Weis, O. Frank, M. Kalbac, Carbon 2016, 98, 592–
598.
A. Bagri, C. Mattevi, M. Acik, Y. J. Chabal, M. Chhowalla, V. B.
Shenoy, Nat. Chem. 2010, 2, 581.
Y. C. G. Kwan, G. M. Ng, C. H. A. Huan, Thin Solid Films 2015, 590,
40–48.
L. G. Cançado, A. Jorio, E. H. M. Ferreira, F. Stavale, C. A. Achete, R.
B. Capaz, M. V. O. Moutinho, A. Lombardo, T. S. Kulmala, A. C.
Ferrari, Nano Lett. 2011, 11, 3190–3196.
The mechanism of nucleophilic exchange in this case cannot proceed
via the typical SN2 substitution of the alcohol. Instead, allylic migration
or activation of the carboxylate are considered to be the most likely
mechanisms to occur, perhaps even simultaneously. All of these
mechanisms lead to identical products for the on-surface reaction.
P. Kovaříček, A. C. Meister, K. Flídrová, R. Cabot, K. Kovaříčková, J.-
M. Lehn, Chem. Sci. 2016, 7, 3215–3226.
[4]
[5]
K. Kostarelos, K. S. Novoselov, Nat. Nanotechnol. 2014, 9, 744–745.
F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I.
Katsnelson, K. S. Novoselov, Nat. Mater. 2007, 6, 652–655.
M. Sharon, M. Sharon, Graphene: An Introduction to the
Fundamentals and Industrial Applications, John Wiley & Sons, 2015.
F. V. Ferreira, L. Cividanes, F. S. Brito, B. R. C. de Menezes, W.
Franceschi, E. A. N. Simonetti, G. P. Thim, Functionalizing Graphene
and Carbon Nanotubes: A Review, Springer, 2016.
A. Criado, M. Melchionna, S. Marchesan, M. Prato, Angew. Chem. Int.
Ed. 2015, 54, 10734–10750.
G. Zhao, X. Li, M. Huang, Z. Zhen, Y. Zhong, Q. Chen, X. Zhao, Y.
He, R. Hu, T. Yang, et al., Chem. Soc. Rev. 2017, 46, 4417–4449.
J. R. Lomeda, C. D. Doyle, D. V. Kosynkin, W.-F. Hwang, J. M. Tour,
J. Am. Chem. Soc. 2008, 130, 16201–16206.
D. C. Elias, R. R. Nair, T. M. G. Mohiuddin, S. V. Morozov, P. Blake,
M. P. Halsall, A. C. Ferrari, D. W. Boukhvalov, M. I. Katsnelson, A. K.
Geim, et al., Science 2009, 323, 610–613.
[6]
[7]
[43]
[44]
[45]
[8]
[46]
[47]
[48]
[9]
[10]
[11]
[49]
[50]
[12]
M. Dubecký, E. Otyepková, P. Lazar, F. Karlický, M. Petr, K. Čépe, P.
Banáš, R. Zbořil, M. Otyepka, J. Phys. Chem. Lett. 2015, 6, 1430–
1434.
R. Stine, J. W. Ciszek, D. E. Barlow, W.-K. Lee, J. T. Robinson, P. E.
Sheehan, Langmuir 2012, 28, 7957–7961.
[13]
[14]
[15]
[16]
P. Kovaříček, Z. Bastl, V. Valeš, M. Kalbáč, Chem. – Eur. J. 2016, 22,
5404–5408.
K. Drogowska, P. Kovaříček, M. Kalbáč, Chem. – Eur. J. 2017, 23,
4073–4078.
M. Gobbi, S. Bonacchi, J. X. Lian, Y. Liu, X.-Y. Wang, M.-A. Stoeckel,
M. A. Squillaci, G. D’Avino, A. Narita, K. Müllen, et al., Nat. Commun.
2017, 8, 14767.
This article is protected by copyright. All rights reserved.