Multielectron Oxidation of Anthracenes
J. Phys. Chem. A, Vol. 103, No. 50, 1999 11219
minimum value of the rate constant of electron-transfer dispro-
portionation of anthracene radical cations, since the much
stronger interaction of other anthracene dications with H2O
causes the negative shift in the E0ox value, resulting in the much
larger k1 values. The observed reactivity order of anthracene
radical cations (An > EtAn > PhCH2An > Me2An) may be
determined by the thermodynamic stability of the complex
formed between corresponding dication and H2O. Thus, intro-
duction of substituents at 9- and 10-positions of anthracene
decreases the reactivity of electron-transfer disproportionation
of the radical cation which is the rate-determining step for the
multielectron oxidation of anthracenes.
Acknowledgment. We are grateful to Dr. M. Fujita for his
valuable contribution in the early stage of the present work.
This work was partially supported by a Grant-in-Aid for
Scientific Research Priority Area (10149230 and 1025220) from
the Ministry of Education, Science, Culture and Sports, Japan.
Figure 11. Plot of [Me2An] vs ∆Hmsl of ESR spectra of Me2An•+ in
MeCN at 298 K. Inset: ESR spectrum of Me2An•+ generated in the
electron-transfer oxidation of Me2An (1.0 × 10-2 M) with [Fe(phen)3]3+
(1.0 × 10-2 M) in MeCN at 298 K.
References and Notes
(1) (a) Parker, V. D. Acc. Chem. Res. 1984, 17, 243. (b) Hammerich,
O.; Parker, V. D. AdV. Phys. Org. Chem. 1984, 20, 55.
where λ is the reorganization energy of the electron-transfer
reaction.39 The ∆Gq values are obtained from the rate constant
(2) Bard, A. J.; Ledwith, A.; Shine, H. J. AdV. Phys. Org. Chem. 1976,
12, 115.
(3) (a) Bordwell, F. G. Acc. Chem. Res. 1988, 21, 456. (b) Bordwell,
F. G.; Bausch, M. J. J. Am. Chem. Soc. 1986, 108, 2473. (c) Bordwell, F.
G.; Cheng, J.-P.; Bausch, M. J. J. Am. Chem. Soc. 1988, 110, 2867. (d)
Bordwell, F. G.; Cheng, J.-P. J. Am. Chem. Soc. 1989, 111, 1792. (e) Zhang,
X.; Bordwell, F. G. J. Org. Chem. 1992, 57, 4163. (f) Zhang, X.-M.;
Bordwell, F. G.; Bares, J. E.; Cheng, J.-P.; Petrie, B. C. J. Org. Chem.
1993, 58, 3051.
(4) (a) Nicholas, A. M. P.; Arnold, D. R. Can. J. Chem. 1982, 60,
2165. (b) Nicholas, A. M. P.; Arnold, D. R. Can. J. Chem. 1984, 62, 1850.
(c) Nihcolas, A. M. P.; Arnold, D. R. Can. J. Chem. 1984, 62, 1860.
(5) (a) Fukuzumi, S.; Tokuda, Y.; Kitano, T.; Okamoto, T.; Otera, J.
J. Am. Chem. Soc. 1993, 115, 8960. (b) Fukuzumi, S.; Koumitsu, S.;
Hironaka, K.; Tanaka, T. J. Am. Chem. Soc. 1987, 109, 305.
(6) (a) Baciocchi, E.; Bietti, M.; Steenken, S. J. Am. Chem. Soc. 1997,
119, 4078. (b) Baciocchi, E.; Delgiacco, T.; Elisei, F. J. Am. Chem. Soc.
1993, 115, 12290. (c) Baciocchi, E.; Cort, A. D.; Eberson, L.; Mandolini,
L.; Rol, C. J. Org. Chem. 1986, 51, 4544. (d) Baciocchi, E.; D’Acunzo, F.;
Galli, C.; Lanzalunga, O. J. Chem. Soc., Perkin Trans. 2 1996, 133. (d)
Fujita, M.; Ishida, A.; Takamuku, S.; Fukuzumi, S. J. Am. Chem. Soc. 1996,
118, 8566.
of electron transfer (ket) and the diffusion rate constant (kdiff
)
using eq 20, where Z is the collision frequency taken as 1 ×
1011 M-1 s-1, F is the Faraday constant, the kdiff value in MeCN
is 2.0 × 1010 M-1 s-1 and the other notations are conventional.
∆Gq ) (2.3RT/F) log[Z(ket-1 - kdiff-1)]
(20)
To determine the self-exchange rate constant between Me2An•+
and Me2An (eq 21),
kex
{\
Me2An + Me2An•+
} Me2An•+ + Me2An
(21)
the ESR spectra of Me2An•+ produced by electron transfer from
Me2An to [Ru(bpy)3]3+ were measured in the presence of
various concentrations of Me2An in MeCN (inset in Figure 11).40
The maximum slope line width (∆Hmsl) of the ESR spectrum
of Me2An•+ increases linearly with an increase in the concentra-
tion of Me2An as shown in Figure 11. The rate constants (kex)
of the electron exchange reactions between Me2An•+ and Me2-
An (eq 19) were determined as 5.0 × 108 M-1 s-1 using eq 22,
(7) (a) Schlesener, C. J.; Amatore, C.; Kochi, J. K. J. Am. Chem. Soc.
1984, 106, 3567. (b) Schlesener, C. J.; Amatore, C.; Kochi, J. K. J. Am.
Chem. Soc. 1984, 106, 7472.
(8) (a) Albini, A.; Sulpizio, A. In Photoinduced Electron Transfer; Fox,
M. A., Chanon, M., Eds.; Elsevier: Amsterdam, 1988; Part C, p 88. (b)
Albini, A.; Fasani, E.; Mella, M. Topp. Curr. Chem. 1993, 168, 143.
(9) (a) Parker, V. D.; Chao, E. T.; Zheng, G. J. Am. Chem. Soc. 1997,
119, 11390. (b) Reitsto¨en, B.; Norrsell, F.; Parker, V. D. J. Am. Chem.
Soc. 1989, 111, 8463. (c) Parker, V. D.; Chao, Y. T.; Reitsto¨en, B. J. Am.
Chem. Soc. 1991, 113, 2336. (d) Reitsto¨en, B.; Parker, V. D. J. Am. Chem.
Soc. 1991, 113, 6954. (e) Reitsto¨en, B.; Parker, V. D. J. Am. Chem. Soc.
1990, 112, 4968. (f) Reitsto¨en, B.; Parker, V. D. Acta Chem. Scand. 1992,
46, 464.
(10) (a) Tolbert, L. M.; Khanna, R. K.; Popp, A. E.; Gelbaum, L.;
Bottomley, L. A. J. Am. Chem. Soc. 1990, 112, 2373. (b) Sirimanne, S. R.;
Li, Z. Z.; VanderVeer, D. R.; Tolbert, L. M. J. Am. Chem. Soc. 1991, 113,
1766. (c) Tolbert, L. M.; Li, Z. Z.; Sirimanne, S. R.; VanDerveer, D. G. J.
Org. Chem. 1997, 62, 3927.
kex ) 1.52 × 107(∆Hmsl - ∆H0msl)/{(1 - Pi)[Me2An]}
(22)
where ∆Hmsl and ∆H0msl are the maximum slope line widths of
the ESR spectra in the presence and absence of Me2An,
respectively, and Pi is a statistical factor.41 The reorganization
energies (λ) of the electron-transfer reaction is obtained as 12.5
kcal mol-1 from the kex values using eq 23 (Z ) 1011 M-1 s-1).
(11) (a) Tanko, J. M.; Wang, Y. Chem. Commun. 1997, 2387. (b) Wang,
Y.; Tanko, J. M. J. Am. Chem. Soc. 1997, 119, 8201.
kex ) Z exp(-λ/4RT)
(23)
(12) Eberson, L.; Blum, Z.; Helge´e, B.; Nyberg, K. Tetrahedron 1978,
34, 731.
(13) Pross, A. J. Am. Chem. Soc. 1986, 108, 3537.
Assuming that the λ value for the electron-transfer dispro-
portionation of Me2An•+ is the same as that for the electron
exchange between Me2An•+ and Me2An, the k1 value is
(14) (a) Parker, V. D.; Tilset, M. J. Am. Chem. Soc. 1987, 109, 2521.
(b) Parker, V. D.; Tilset, M. J. Am. Chem. Soc. 1988, 110, 1649.
(15) (a) Shaik, S. S.; Pross, A. J. Am. Chem. Soc. 1989, 111, 4306. (b)
Shaik, S.; Reddy, A. C.; Ioffe, A.; Dinnocenzo, J. P.; Danovich, D.; Cho,
J. K. J. Am. Chem. Soc. 1995, 117, 3205.
(16) (a) Workentin, M. S.; Parker, V. D.; Morkin, T. L.; Wayner, D. D.
M. J. Phys. Chem. A 1998, 102, 6503. (b) Workentin, M. S.; Schepp, N.
P.; Johnston, L. J.; Wayner, D. D. M. J. Am. Chem. Soc. 1994, 116, 1141.
(c) Workentin, M. S.; Johnston, L. J.; Wayner, D. D. M.; Parker, V. D. J.
Am. Chem. Soc. 1994, 116, 8279.
estimated from the λ and ∆G0 values as 3.0 × 103 M-1 s-1
.
et
This value agrees well with the k1 value (2.4 × 103 M-1 s-1) in
Table 1. Such an agreement between the k1 value and the
calculated value of the electron-transfer rate constant strongly
supports that the observed second-order decay of Me2An•+ is
ascribed to electron-transfer disproportionation between Me2-
An•+. The k1 value of Me2An•+ may be considered as the