A. Celaya Sanfiz et al. / Journal of Catalysis 258 (2008) 35–43
43
necessary to eliminate environmental contamination from the re-
Acknowledgments
action, transport, and storage. This procedure, which converts all
of the surface metal ions into their highest oxidation states, may
be connected with structural changes. Although the local struc-
ture is affected, it is unclear whether the elemental composition
changes significantly. However, the surface reconstruction holds
for the entire surface of M1, thus justifying a comparison of the
basal plane with the total surface in terms of elemental composi-
tion.
The authors thank Dr. Olaf Timpe for helpful discussions, Dr.
Frank Girgsdies for performing the phase analysis of the catalysts,
Edith Kitzelmann for conducting the XRD measurements, and Kil-
ian Klaeden and Gisela Lorenz for carrying out the nitrogen ad-
sorption measurements.
References
In any case, these uncertainties do not affect the findings that
the intrinsic catalytic properties of the basal plane of M1 in the
selective oxidation of propane to acrylic acid do not differ much
from those of the lateral surface of the M1 needles. If we accept
this result, then the question arises as to why increased catalytic
activity and improved selectivity to acrylic acid were observed in
previous studies after grinding of M1 [11,12]. The details of the
grinding procedure were not given in those reports; however, most
likely the mechanical treatment was less gentle than that in the
present study and probably generated a more defect-rich material
along with extra basal planes. Another possible explanation could
be that contamination, such as residues from the preparation pro-
cedure, which are common on catalyst surfaces, were removed by
extended grinding. Breaking the needles and scratching deposited
impurities away from the sides of the needles would expose fresh,
uncontaminated, and thus active MoVTeNb oxide surface.
[1] T. Ushikubo, H. Nakamura, Y. Koyasu, S. Wajiki, US Patent 5 380 933 (1995), to
Mitsubishi Kasei Corporation.
[2] M. Hatano, A. Kayo, US Patent 5 049 692 (1991), to Mitsubishi Kasei Corpora-
tion.
[3] T. Ushikubo, K. Oshima, A. Kayou, M. Hatano, Stud. Surf. Sci. Catal. 112 (1997)
473.
[4] M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Top. Catal. 23 (2003) 39.
[5] J.M. Oliver, J.M. Lopez Nieto, P. Botella, Catal. Today 96 (2004) 241.
[6] W. Ueda, D. Vitry, T. Katou, Catal. Today 96 (2004) 235.
[7] H. Tsuji, K. Oshima, Y. Koyasu, Chem. Mater. 15 (2003) 2112.
[8] P. DeSanto Jr., D.J. Buttrey, R.K. Grasselli, C.G. Lugmair, A.F. Volpe Jr., B.H. Toby,
T. Vogt, Z. Kristallogr. 219 (2004) 152.
[9] H. Murayama, D. Vitry, W. Ueda, G. Fuchs, M. Anne, J.L. Dubois, Appl. Catal. A
Gen. 318 (2007) 137.
[10] A. Celaya Sanfiz, T.W. Hansen, F. Girgsdies, O. Timpe, E. Rödel, T. Ressler, A.
press.
[11] W. Ueda, K. Oshihara, Appl. Catal. A 200 (2000) 135.
[12] K. Oshihara, T. Hisano, W. Ueda, Top. Catal. 15 (2001) 153.
[13] V.V. Guliants, R. Bhandari, R.S. Soman, O. Guerrero-Perez, M.A. Banares, Appl.
Catal. A 274 (2004) 213.
5. Conclusion
[14] R.K. Grasselli, D.J. Buttrey, P. DeSanto Jr., J.D. Burrington, C.G. Lugmair, A.F.
Volpe Jr., T. Weingand, Catal. Today 91–92 (2004) 251.
The model studies presented here suggest that a distinguished
lattice plane of the M1 crystal structure, the (001) plane, is not
solely responsible for its outstanding catalytic activity and se-
lectivity in the partial oxidation of propane to acrylic acid. The
chemical and structural natures of the active ensembles on the
catalyst surface remain unknown. The unique crystal structure
of the M1 phase certainly plays an essential role in the selec-
tive (amm)oxidation of propane, because amorphous material or
MoVTeNb oxide comprising different phases cannot compare with
phase-pure crystalline M1. All experimental experience to date
suggests that this may differ from the situation for related mixed
oxides, such as nanostructured MoVW oxides, which have been
reported to be active in propylene oxidation in a semicrystalline
state [30]. Similar intrinsic reactivity irrespective of the terminat-
ing lattice plane implies that related active ensembles of metal–
oxo clusters are exposed to the reactants on the entire surface
of the M1 needles. The lateral surface of the needles accounts
for the main part of the surface area of M1 (80%). The stepped
morphology of the latter surface may generate similar metal-oxo
arrangements as on the surface of the basal plane of the needles.
HR-TEM studies together with targeted synthesis of M1 showing
different microstructure are currently in progress to verify this as-
sumption.
[15] V.V. Guliants, R. Bhandari, B. Swaminathan, V.K. Vasudevan, H.H. Brongersma,
A. Knoester, A.M. Gaffney, S. Han, J. Phys. Chem. B 109 (2005) 24046.
[16] V.V. Guliants, R. Bhandari, A.R. Hughett, S. Bhatt, B.D. Schuler, H.H. Brongersma,
A. Knoester, A.M. Gaffney, S. Hann, J. Phys. Chem. B 110 (2006) 6129.
[17] J.-P. Jacobs, A. Maltha, J.G.H. Reintjes, J. Drimal, V. Ponec, H.H. Brongersma,
J. Catal. 147 (1994) 294.
[18] H.H. Brongersma, M. Draxler, M. de Ridder, P. Bauer, Surf. Sci. Rep. 62 (2007)
63.
[19] G. Mestl, N.F.D. Verbruggen, H. Knözinger, Langmuir 11 (1995) 3034.
[20] G.J.A. Hellings, H. Ottevanger, S.W. Boelens, C.L.C.M. Knibbeler, H.H. Bron-
gersma, Surf. Sci. 162 (1985) 913.
[21] W.P.A. Jansen, A. Knoester, A.J.H. Maas, P. Schmitt, A. Kytökivi, A.W. Denier van
der Gon, H.H. Brongersma, Surf. Interface Anal. 36 (2004) 1469.
[22] L.C.A. van den Oetelaar, H.E. van Benthem, J.H.J.M. Helwegen, P.J.A. Stapel, H.H.
Brongersma, Surf. Interface Anal. 26 (1998) 537.
[23] M. Baca, A. Pigamo, J.L. Dubois, J.M.M. Millet, Top. Catal. 23 (2003) 39.
[24] R.K. Grasselli, D.J. Buttrey, J.D. Burrington, A. Andersson, J. Holmberg, W. Ueda,
J. Kubo, C.G. Lugmair, A.F. Volpe Jr., Top. Catal. 38 (2006) 7.
[25] R.K. Grasselli, Catal. Today 99 (2005) 23.
[26] R.K. Grasselli, J.D. Burrington, D.J. Buttrey, P. De Santo, C.G. Lugmair, A.F. Volpe
Jr., T. Weingand, Top. Catal. 23 (2003) 5.
[27] J.B. Wagner, O. Timpe, F.A. Hamid, A. Trunschke, U. Wild, D.S. Su, R.K. Widi,
S.B.A. Hamid, R. Schlögl, Top. Catal. 38 (2006) 51.
[28] D. Vitry, Y. Moriwaka, J.L. Dubois, W. Ueda, Appl. Catal. A Gen. 251 (2003) 411.
[29] V.V. Guliants, R. Bhandari, H.H. Brongersma, A. Knoester, A.M. Gaffney, S. Han,
J. Phys. Chem. B 109 (2005) 10234.
[30] H. Hibst, F. Rosowski, G. Cox, Catal. Today 117 (2006) 234.