COMMUNICATIONS
Quest for Efficient Catalysts based on Zinc tert-Butyl Peroxides
J. Stiller, T. Naicker, H. Jiang, K. A. Jørgensen, Angew.
Chem. 2014, 126, 7534; Angew. Chem. Int. Ed. 2014, 53,
7406; d) Y. Zhu, Q. Wang, R. G. Cornwall, Y. Shi,
Chem. Rev. 2014, 114, 8199.
In summary, useful insights to allow further devel-
opment of catalytic systems for the epoxidation of
enones mediated by Zn alkyl peroxides have been
presented. An appropriate choice of C2-symmetric bi-
soxazolinate and C1-symmetric enaminooxazolinate
auxiliaries showed that the steric effects of the sub-
stituents in close proximity of the binding site had
a major influence on the enantioselectivities of the
studied reactions. The most active and selective C1-
symmetric enaminooxazolinate gave epoxides of both
aliphatic and aromatic enones in excellent yields and
with good enantioselectivities; for example, up to
96% yield and 91% ee for aromatic enones. Thus, the
data show that C2 symmetry is not a requirement for
obtaining high enantioselectivity. We believe that our
results will enable the rational development of new
efficient and environmentally benign catalysts for the
asymmetric epoxidation of enones.
[3] Y. Tanaka, K. Nishimura, K. Tomioka, Tetrahedron
2003, 59, 4549.
[4] a) O. Jacques, S. J. Richards, R. F. W. Jackson, Chem.
Commun. 2001, 2712; b) C. L. Elston, R. F. W. Jackson,
S. J. F. MacDonald, P. J. Murray, Angew. Chem. 1997,
109, 379; Angew. Chem. Int. Ed. Engl.1997, 36, 410.
[5] a) H. B. Yu, X. F. Zheng, Z. M. Lin, Q. S. Hu, W. S.
Huang, L. Pu, J. Org. Chem. 1999, 64, 8149; b) A. Min-
atti, K. H. Dçtz, Synlett 2004, 1634; c) A. Minatti, K. H.
Dçtz, Eur. J. Org. Chem. 2006, 268; d) H. M. Wang, Z.
Wang, K. L. Ding, Tetrahedron Lett. 2009, 50, 2200;
e) M. Kubisiak, K. Zelga, I. Justyniak, E. Tratkiewicz,
T. Pietrzak, A. R. Keeri, Z. Ochal, L. Hartenstein,
´
P. W. Roesky, J. Lewinski, Organometallics 2013, 32,
5263.
[6] a) Y. Nishikawa, H. Yamamoto, J. Am. Chem. Soc.
2011, 133, 8432; b) M. Wu, C. X. Miao, S. F. Wang,
X. X. Hu, C. G. Xia, F. E. Kuhn, W. Sun, Adv. Synth.
Catal. 2011, 353, 3014; c) B. Wang, S. F. Wang, C. G.
Xia, W. Sun, Chem. Eur. J. 2012, 18, 7332; d) O. Cussó,
I. Garcia-Bosch, X. Ribas, J. Lloret-Fillol, M. Costas, J.
Am. Chem. Soc. 2013, 135, 14871; e) W. Dai, G. Li, B.
Chen, L. Wang, S. Gao, Org. Lett. 2015, 17, 904.
[7] T. Nemoto, T. Ohshima, K. Yamaguchi, M. Shibasaki,
J. Am. Chem. Soc. 2001, 123, 2725.
[8] a) T. Nemoto, H. Kakei, V. Gnanadesikan, S. Y. Tosaki,
T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2002,
124, 14544; b) S. Matsunaga, T. Kinoshita, S. Okada, S.
Harada, M. Shibasaki, J. Am. Chem. Soc. 2004, 126,
7559; c) S. A. Schuetz, E. A. Bowman, C. M. Silvernail,
V. W. Day, J. A. Belot, J. Organomet. Chem. 2005, 690,
1011.
[9] a) R. F. Chen, C. T. Qian, J. G. de Vries, Tetrahedron
Lett. 2001, 42, 6919; b) D. Jayaprakash, Y. Kobayashi,
T. Arai, Q. S. Hu, X. F. Zheng, L. Pu, H. Sasai, J. Mol.
Catal. A: Chem. 2003, 196, 145; c) H. Kakei, R. Tsuji,
T. Ohshima, M. Shibasaki, J. Am. Chem. Soc. 2005,
127, 8962; d) Q. Qian, Y. Tan, B. Zhao, T. Feng, Q.
Shen, Y. Yao, Org. Lett. 2014, 16, 4516.
Experimental Section
General Procedure
(t-Bu)2Zn (0.01 mmol) was added to a Schlenk flask contain-
ing a solution of pro-ligand 1 (0.01 mmol) in toluene
(0.5 mL) under inert conditions at À608C. The resulting so-
lution was stirred at room temperature for 2 h. The Zn com-
plex 2 generated in situ was exposed to dry air at À208C for
1 h to afford Zn alkyl peroxide 3. To the resulting solution
of 3 cooled at À608C was added a toluene solution of
TBHP (4M, 0.12 mmol) followed by enone (0.1 mmol) in
toluene (1 mL). The reaction was warmed to 08C within
10 min, then stirred for 1 h. Volatile solvents were removed
under high vacuum. The crude product was dissolved in di-
ethyl ether (5 mL), and filtered through a pad of silica gel.
The resulting residue was further purified by silica-gel
column chromatography (hexane:ethyl acetate 9:1) to give
the desired epoxy products 5.
[10] For recent selected reviews, see: a) Zinc Catalysis: Ap-
plications in Organic Synthesis, (Eds.: S. Enthaler, X.-F.
Wu), Wiley-VCH, Weinheim, 2015; b) D. Łowicki, S.
Acknowledgements
We acknowledge the European Union and Regional Develop-
ment Fund within a project of Foundation for Polish Science
(MPD/2010/13; A. R. K.) and the National Science Centre
(grant DEC-2012/04A/ST5/00595; I. J., J. L.) for financial
support.
´
Bas, J. Młynarski, Tetrahedron 2015, 71, 1339; c) T.
Bauer, Coord. Chem. Rev. 2015, 299, 83; d) X.-F. Wu,
H. Neumann, Adv. Synth. Catal. 2012, 354, 3141; e) X.-
F. Wu, Chem. Asian J. 2012, 7, 2502.
[11] D. Enders, J. Zhu, G. Raabe, Angew. Chem. 1996, 108,
1827; Angew. Chem. Int. Ed. Engl. 1996, 35, 1725.
´
[12] a) J. Lewinski, Z. Ochal, E. Bojarski, E. Tratkiewicz, I.
References
Justyniak, J. Lipkowski, Angew. Chem. 2003, 115, 4791;
Angew. Chem. Int. Ed. Angew. Chem. Int. Ed. Engl.
[1] P. Crotti, M. Pineschi, in: Aziridines and Epoxides in
Organic Synthesis (Ed.: A. K. Yudin), Wiley-VCH,
Weinheim, 2006, pp 271–313.
[2] a) M. J. Porter, J. Skidmore, Chem. Commun. 2000,
1215; b) D. Diez, M. G. Nunez, A. B. Anton, P. Garcia,
R. F. Moro, N. M. Garrido, I. S. Marcos, P. Basabe, J. G.
Urones, Curr. Org. Synth. 2008, 5, 186; c) R. L. Davis,
´
2003, 42, 4643; b) J. Lewinski, W. Marciniak, J. Lipkow-
ski, I. Justyniak, J. Am. Chem. Soc. 2003, 125, 12698.
[13] a) For a review of metal complexes incorporating mon-
oanionic bisoxazolinate ligands, see: S. Dagorne, S. Bel-
lemin-Laponnaz, A. Maisse-Francois, Eur. J. Inorg.
Chem. 2007, 913. b) For a review of C1-symmetric bi-
Adv. Synth. Catal. 2016, 358, 864 – 868
ꢀ 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim
867