functionalization was also readily possible, setting the base for rapidly accessing diheteroaryl ketone derivatives. In comparison to
classical approaches for pyridine benzylic functionalization, we anticipate that our catalytic protocol will provide an efficient alternative
for divergent parallel synthesis efforts.
Acknowledgments
Tan is grateful to the support by the National Natural Science Foundation of China (No. 21702013), Beijing Natural Science
Foundation (No. 2184115) and the Fundamental Research Funds from the Central Universities (No. XK1802-6, buctrc201721) in Beijing
University of Chemical Technology.
References
[1] (a) R.E. Dolle, B.L. Bourdonnec, K. Worm, et al., Comb. Chem. 12 (2010) 765-806;
(b) A. Facchetti, Chem. Mater. 23 (2011) 733-758;
(c) L.M. Blair, J. Sperry, J. Nat. Prod. 76 (2013) 794-812;
(d) E. Vitaku, D.T. Smith, J.T. Njardarson, J. Med. Chem. 57 (2014) 10257-10274;
(e) U.H.F. Bunz, Acc. Chem. Res. 48 (2015) 1676-1686;
(f) R.K. Alan, A.R. Christopher, F.V.S. Eric, et al., Comprehensive Heterocyclic Chemistry III, Elsevier, Oxford, 2008;
(g) K.C. Majumdar, S.K. Chattopadhyay, Heterocycles in Natural Product Synthesis, Wiley-VCH, Weinheim, 2011.
[2] (a) J. Alvarez-Builla, J.J. Vaquero, J. Barluenga, Modern Heterocyclic Chemistry, Wiley-VCH, Weinheim, 2011;
(b) M. Baumann, I.R. Baxendale, Beilstein, J. Org. Chem. (9) 2013 2265-2319;
(c) M.D. Hill, Chem. -Eur. J. 16 (2010) 12052-12062;
(d) J.S. Carey, D. Laffan, C. Thomson, et al., Org. Biomol. Chem. 4 (2006) 2337-2347;
(e) M. Schlosser, F. Mongin, Chem. Soc. Rev. 36 (2007) 1161-1172;
(f) L. Ackermann, H.K. Potukuchi, A.R. Kapdi, et al., Chem. -Eur. J. 16 (2010) 3300-3303;
(g) Y. S. Kumar, F. -R. N. Khan, Chin. Chem. Lett. 28 (2017) 1607-1612;
(h) A. P. Krinochkin, D. S. Kopchuk, N. V. Chepchugov, et al., Chin. Chem. Lett. 28 (2017) 1099-1103.
[3] R.A. Aycock, D.B. Vogt, N. T. Jui, Chem. Sci. 8 (2017) 7998-8003.
[4] (a) A. Kotschy, G. Timári, Heterocycles from Transition Metal Catalysis, Springer, Dordrecht, 2005;
(b) S. Schrꢀter, C. Stock, T. Bach, Tetrahedron, 61 (2005) 2245-2267;
(c) M. Beller, C. Bolm, Transition Metals for Organic Synthesis: Building Blocks and Fine Chemicals, 2nd ed. Wiley-VCH, Weinheim, 2004.
[5] (a) H.-Y. Lin, B. B. Snider, J. Org. Chem. 77 (2012) 4832-4836;
(b) J.A. Lowe, D.L. Hageman, S.E. Drozda, et al., J. Med. Chem. 37 (1994) 3789-3811;
(c) J.J. Mousseau, A. Larivée, A.B. Charette, Org. Lett. 10 (2008) 1641-1643;
(d) S. Duez, A.K. Steib, S.M. Manolikakes, et al., Angew. Chem. Int. Ed. 50 (2011) 7686-7690;
(e) K.P. Bogeso, A.V. Christensen, J. Hyttel, et al., J. Med. Chem. 28 (1985) 1817-1828;
[6] (a) R.B. Woodward, E.C. Kornfeld, Org. Synth. 29 (1949) 44-44;
(b) W.G. Kofron L.M. Baclawski, Org. Synth. 52 (1972) 75-75.
(c) R. Zhu, G. Cheng, C. Jia, et al., J. Org. Chem. 81 (2016) 7539-7544.
[7] (a) A.T. Londregan, S. Jennings, L. Wei, Org. Lett. 12 (2010) 5254-5257;
(b) A.T. Londregan, S. Jennings, L. Wei, Org. Lett. 13 (2011) 1840-1843.
[8] (a) P.S. Fier, J. Am. Chem. Soc. 139 (2017) 9499-9502;
(b) D.D. Zhai, X.Y. Zhang, Y.F. Liu, et al., Angew. Chem. Int. Ed. 57 (2018) 1650-1653. and references therein.
[9] (a) J.J. Tan, Y. Chen, H. Li, et al., J. Org. Chem. 79 (2014) 8871-8876;
(b) H.Q. Wang, W.T. Xu, Z.Q. Wang, et al., J. Org. Chem. 80 (2015) 2431-2435;
(c) L. Liu, C. Tan, R. Fan, et al., Org. Biomol. Chem. 17 (2019) 252-256.
[10] (a) S. Lee, N.A. Beare, J.F. Hartwig, J. Am. Chem. Soc. 123 (2001) 8410-8411;
(b) M. Jorgensen, S. Lee, X. Liu, et al., J. Am. Chem. Soc. 124 (2002) 12557-12565;
(c) T. Hama, X. Liu, D.A. Culkin, et al., J. Am. Chem. Soc. 125 (2003) 11176-11177;
(d) X. Liu, J.F. Hartwig, J. Am. Chem. Soc. 126 (2004) 5182-5191;
(e) T. Hama, J.F. Hartwig, Org. Lett. 10 (2008) 1545-1548;
(f) M.R. Biscoe, S.L. Buchwald, Org. Lett. 11 (2009) 1773-1775;
(g) T. Hama, D.A. Culkin, J.F. Hartwig, J. Am. Chem. Soc. 128 (2006) 4976-4985;
(h) B. Zheng, T. Jia, P.J. Walsh, Org. Lett. 15 (2013) 4190-4193;
(i) R. Martin, S.L. Buchwald, Angew. Chem. Int. Ed. 46 (2007) 7236-7239;
(j) G.D. Vo, J.F. Hartwig, Angew. Chem. Int. Ed. 47 (2008) 2127-2130;
(k) R. Martin, S.L. Buchwald, Org. Lett. 10 (2008) 4561-4564;
(l) D.A. Culkin, J.F. Hartwig, Acc. Chem. Res. 36 (2003) 234-245;
(m) F. Bellina, R. Rossi, Chem. Rev. 110 (2010) 3850-3850;
(n) C.C.C. Johansson, T.J. Colacot, Angew. Chem. Int. Ed. 49 (2010) 676-707;
(o) Z. Liu, M. Li, B. Wang, et al., Org. Chem. Front. 5 (2018) 1870-1876;
(p) G. Gao, Y. Fu, M. Li, et al., Adv. Synth. Catal. 359 (2017) 2890-2894;
(q) K. Ablajan, G.B Panetti, X. Yang, et al., Adv. Synth. Catal. 359 (2017) 1927-1932;
(r) G. Saini, P. Kumar, G.S. Kumar, et al., Org. Lett. 20 (2018) 441-444;
(s) I. Astarloa, R. SanMartin, M.T. Herrero, et al., Adv. Synth. Catal. 360 (2018) 1711-1718;
(t) D.J. Leonard, J.W. Ward, J. Clayden, Nature 562 (2018) 105-109.
[11] (a) Á. Molnár, Palladium-Catalyzed Coupling Reactions - Practical Aspects and Future Developments, Wiley-WCH, Weinheim, 2013;
(b) M.L. Crawley, B.M. Trost, Applications of Transition Metal Catalysis in Drug Discovery and Development, Wiley, New York, 2012;
(c) C. Torborg, M. Beller, Adv. Synth. Catal. 351 (2009) 3027-3043.
[12] (a) M.A. Oberli, S.L. Buchwald, Org. Lett. 14 (2012) 4606-4609;
(b) P.E. Maligres, J. Li, S.W. Krska, et al., Angew. Chem. Int. Ed. 51 (2012) 9071-9074;
(c) J.C. Tellis, D.N. Primer, G.A. Molander, Science 345 (2014) 433-436.