the chemical medium, and sensor oxygen consumption. Oxygen
flux was resolved by software allowing nonlinear changes in
the negative time derivative of the oxygen concentration signal
(Oxygraph 2k, Oroboros, Innsbruck, Austria). Following 4 days
of culture the cells were trypsinised, resuspended in the cell culture
medium, and transferred into their respective respiratory chamber
(~1 Mio of cells per chamber), which were then tightly sealed.
Oxygen consumption in both chambers was monitored over time
with the oxygen flux expressed as pmol/(sec·Mio cells). After
basal oxygen consumption was established, either CORMs or
DMSO alone was introduced into the chamber and the change
in oxygen flux was measured as a function of time and CORM
concentrations. Similar measurements were repeated for the CO-
MRs added into the cell-free incubation medium to assess the
effect of CORM addition on the oxygen levels in the cell culture
medium. These experiments were performed as the some of the
reactive CORM intermediates were suggested to interact with
oxygen in the aqueous phase (see Scheme 3).
14 D. Crespy, K. Landfester, U. S. Schubert and A. Schiller, Chem.
Commun., 2010, 46, 6651–6662.
15 I. J. S. Fairlamb, A. K. Duhme-Klair, J. M. Lynam, B. E. Moulton,
C. T. O’Brien, P. Sawle, J. Hammad and R. Motterlini, Bioorg. Med.
Chem. Lett., 2006, 16, 995–998.
16 I. J. S. Fairlamb, J. M. Lynam, B. E. Moulton, I. E. Taylor, A. K.
Duhme-Klair, P. Sawle and R. Motterlini, Dalton Trans., 2007, 3603–
3605.
17 P. C. Kunz, W. Huber, A. Rojas, U. Schatzschneider and B. Spingler,
Eur. J. Inorg. Chem., 2009, 5358–5366.
18 B. E. Moulton, A. K. Duhme-Klair, I. J. S. Fairlamb, J. M. Lynam and
A. C. Whitwood, Organometallics, 2007, 26, 6354–6365.
19 J. Niesel, A. Pinto, H. W. P. N’Dongo, K. Merz, I. Ott, R. Gust and U.
Schatzschneider, Chem. Commun., 2008, 1798–1800.
20 H. Pfeiffer, A. Rojas, J. Niesel and U. Schatzschneider, Dalton Trans.,
2009, 4292–4298.
21 P. Sawle, J. Hammad, I. J. S. Fairlamb, B. Moulton, C. T. O’Brien,
J. M. Lynam, A. K. Duhme-Klair, R. Foresti and R. Motterlini, J.
Pharmacol. Exp. Ther., 2006, 318, 403–410.
22 U. Schatzschneider, Eur. J. Inorg. Chem., 2010, 1451–1467.
23 K. Splith, I. Neundorf, W. N. Hu, H. W. P. N’Dongo, V. Vasylyeva, K.
Merz and U. Schatzschneider, Dalton Trans., 2010, 39, 2536–2545.
24 W. Q. Zhang, A. J. Atkin, R. J. Thatcher, A. C. Whitwood, I. J. S.
Fairlamb and J. M. Lynam, Dalton Trans., 2009, 4351–4358.
25 W. Q. Zhang, A. C. Whitwood, I. J. S. Fairlamb and J. M. Lynam, Inorg.
Chem., 2010, 49, 8941–8952.
Acknowledgements
26 B. Chen, L. L. Guo, C. L. Fan, S. Bolisetty, R. Joseph, M. M. Wright,
A. Agarwal and J. F. George, Am. J. Pathol., 2009, 175, 422–429.
27 L. E. Otterbein, B. S. Zuckerbraun, M. Haga, F. Liu, R. P. Song, A.
Usheva, C. Stachulak, N. Bodyak, R. N. Smith, E. Csizmadia, S. Tyagi,
Y. Akamatsu, R. J. Flavell, T. R. Billiar, E. Tzeng, F. H. Bach, A. M.
K. Choi and M. P. Soares, Nat. Med., 2003, 9, 183–190.
28 M. Allanson and V. E. Reeve, Cancer Immunol. Immunother., 2007, 56,
1807–1815.
The Swiss National Science Foundation (Ambizione
PZ00P2_121989/1 and Grant# 310030_124970/1) is gratefully
acknowledged for financial support. We thank Prof. Roger
Alberto (Institute of Inorganic Chemistry) for helpful discussion
and Dr Nikolay Bogdanov (Institute of Veterinary Physiology) for
his assistance in the isolation of the neonatal rat cardiomyocytes.
29 M. J. Alcaraz, M. I. Guillen, M. L. Ferrandiz, J. Megias and R.
Motterlini, Curr. Pharm. Des., 2008, 14, 465–472.
30 J. E. Clark, P. Naughton, S. Shurey, C. J. Green, T. R. Johnson, B. E.
Mann, R. Foresti and R. Motterlini, Circ. Res., 2003, 93, E2–E8.
31 K. S. Davidge, G. Sanguinetti, C. H. Yee, A. G. Cox, C. W. McLeod, C.
E. Monk, B. E. Mann, R. Motterlini and R. K. Poole, J. Biol. Chem.,
2009, 284, 4516–4524.
32 M. Desmard, K. S. Davidge, O. Bouvet, D. Morin, D. Roux, R. Foresti,
J. D. Ricard, E. Denamur, R. K. Poole, P. Montravers, R. Motterlini
and J. Boczkowski, FASEB J., 2009, 23, 1023–1031.
References
1 B. E. Mann, Top. Organomet. Chem., 2010, 32, 247–285.
2 R. Motterlini and L. E. Otterbein, Nat. Rev. Drug Discovery, 2010, 9,
728–743.
3 A. Pamplona, A. Ferreira, J. Balla, V. Jeney, G. Balla, S. Epiphanio,
A. Chora, C. D. Rodrigues, I. P. Gregoire, M. Cunha-Rodrigues, S.
Portugal, M. P. Soares and M. M. Mota, Nat. Med., 2007, 13, 703–710.
4 M. L. Ferrandiz, N. Maicas, I. Garcia-Amandis, M. C. Terencio, R.
Motterlini, I. Devesa, L. A. B. Joosten, W. B. van den Berg and M. J.
Alcaraz, Ann. Rheum. Dis., 2008, 67, 1211–1217.
5 A. A. Chora, P. Fontoura, A. Cunha, T. F. Pais, S. Cardoso, P. P. Ho,
L. Y. Lee, R. A. Sobel, L. Steinman and M. P. Soares, J. Clin. Invest.,
2007, 117, 438–447.
6 J. D. Beckman, J. D. Belcher, J. V. Vineyard, C. S. Chen, J. Nguyen,
M. O. Nwaneri, M. G. O’Sullivan, E. Gulbahce, R. P. Hebbel and G.
M. Vercellotti, Am. J. Physiol. Heart Circ. Physiol., 2009, 297, H1243–
H1253.
7 S. K. Bains, R. Foresti, J. Howard, S. Atwal, C. J. Green and R.
Motterlini, Arterioscler. Thromb. Vasc. Biol., 2010, 30, 305–U331.
8 A. Nicolai, M. Li, D. H. Kim, S. J. Peterson, L. Vanella, V. Positano,
A. Gastaldelli, R. Rezzani, L. F. Rodella, G. Drummond, C. Kusmic,
A. L’Abbate, A. Kappas and N. G. Abraham, Hypertension, 2009, 53,
508–515.
9 M. Di Pascoli, L. Rodella, D. Sacerdoti, M. Bolognesi, S. Turkseven
and N. G. Abraham, Biochem. Biophys. Res. Commun., 2006, 340, 935–
943.
33 E. Masini, A. Vannacci, P. Failli, R. Mastroianni, L. Giannini, M. C.
Vinci, C. Uliva, R. Motterlini and P. F. Mannaioni, FASEB J., 2008,
22, 3380–3388.
34 R. Motterlini, FEBS J., 2009, 276, 45–46.
35 R. Alberto and R. Motterlini, Dalton Trans., 2007, 1651–1660.
36 R. Motterlini, P. Sawle, S. Bains, J. Hammad, R. Alberto, R. Foresti
and C. J. Green, FASEB J., 2004, 18, 284–286.
37 T. S. Pitchumony, B. Spingler, R. Motterlini and R. Alberto, Chimia,
2008, 62, 277–279.
38 T. S. Pitchumony, B. Spingler, R. Motterlini and R. Alberto, Org.
Biomol. Chem., 2010, 8, 4849–4854.
39 F. Zobi, A. Degonda, M. C. Schaub and A. Y. Bogdanova, Inorg.
Chem., 2010, 49, 7313–7322.
40 F. Zobi, L. Kromer, B. Spingler and R. Alberto, Inorg. Chem., 2009,
48, 8965–8970.
41 T. J. Haley and Fd. Cartwrig, J. Pharm. Sci., 1968, 57, 321–323.
42 S. Kunze, T. Zobi, P. Kurz, B. Spingler and R. Alberto, Angew. Chem.,
Int. Ed., 2004, 43, 5025–5029.
43 S. Mundwiler, B. Spingler, P. Kurz, S. Kunze and R. Alberto, Chem.–
Eur. J., 2005, 11, 4089–4095.
44 P. Ruiz-Sanchez, S. Mundwiler, A. Medina-Molner, B. Spingler and R.
Alberto, J. Organomet. Chem., 2007, 692, 1358–1362.
45 5, Crystal data. 0.53(C63H86CoN14O14P) ·0.47(C66H88CoBrN14O18PRe)
10 B. S. Zuckerbraun, T. R. Billiar, S. L. Otterbein, P. K. M. Kim, F. Liu,
A. M. K. Choi, F. H. Bach and L. E. Otterbein, J. Exp. Med., 2003,
198, 1707–1716.
11 G. Sass, M. C. P. Soares, K. Yamashita, S. Seyfried, W. H. Zimmermann,
T. Eschenhagen, E. Kaczmarek, T. Ritter, H. D. Volk and G. Tiegs,
Hepatology, 2003, 38, 909–918.
12 B. S. Zuckerbraun, B. Y. Chin, B. Wegiel, T. R. Billiar, E. Czsimadia, J.
Rao, L. Shimoda, E. Ifedigbo, S. Kanno and L. E. Otterbein, J. Exp.
Med., 2006, 203, 2109–2119.
13 A. J. Atkin, S. Williams, P. Sawle, R. Motterlini, J. M. Lynam and I. J.
S. Fairlamb, Dalton Trans., 2009, 3653–3656.
·C3H6O·6.53(H2O), M = 1700.37, orthorhombic, a = 15.8806(2), b =
3
˚
˚
21.8255(3), c = 26.2738(4) A, U = 9106.6(2) A , T = 183 K, space group
P212121 (no.19), Z = 4, 79318 reflections measured, 20093 unique (Rint
0.0603) which were used in all calculations. The final wR(F2) was 0.1884
(all data).
=
46 M. Lee and C. B. Grissom, Org. Lett., 2009, 11, 2499–2502.
47 3, Crystal data. 2(C70H94CoN16O15P) ·5(C3H6O)·16(H2O), M = 3525.43,
˚
orthorhombic, a = 15.5066(4), b = 22.9558(7), c = 25.1741(7) A,
This journal is
The Royal Society of Chemistry 2012
Dalton Trans., 2012, 41, 370–378 | 377
©