R- or â-amino acids,6 which play determinant roles in biology,
chemistry, and medicine. In particular, unnatural R,R-disubsti-
tuted R- and â-amino acids are of increasing importance for
the preparation of conformationally restricted peptide libraries
as well as intermediates of natural products.7
Enantioselective Amination of
r-Phenyl-r-cyanoacetate Catalyzed by Chiral
Amines Incorporating the r-Phenylethyl
Auxiliary
The application of natural products as organocatalysts con-
stitutes a relevant concept in the field of enantioselective
organocatalysis;8 nevertheless, organocatalysis with natural
products can suffer from their structural complexity, large
molecular weight, and in some cases high cost of isolation. Since
one of the challenges in asymmetric catalysis is to develop a
highly enantioselective reaction under convenient conditions
using a simple catalyst system that is as cheap as possible,9
development of synthetic structurally simpler organic molecules
for organocatalysis is highly desirable. In addition, the main
advantages of synthetic over natural molecules are that both
enantiomers are readily available and that their structure can
be easily modified.
Yongjun Liu, Roberto Melgar-Ferna´ndez, and
Eusebio Juaristi*
Departamento de Qu´ımica, Centro de InVestigacio´n y de
Estudios AVanzados del Instituto Polite´cnico Nacional,
Apartado postal 14-740, 07000 Me´xico, D.F., Mexico
ReceiVed NoVember 1, 2006
Proline is among the most famous examples of a structurally
simple natural catalyst, whose use can be traced even to the
1970s, in applications pioneered by Hajos et al.10 Although this
research then faded away for 25 years, it has reblossomed more
recently.11 In spite of its great efficiency and practicality, proline
has its own limitations, and its supremacy is being challenged
by new synthetic analogues.12 Nevertheless, relatively little new
work appears on successful enantioselective reactions catalyzed
with structurally simple compounds besides proline analogues.
Nineteen chiral amines and their derivatives were prepared
and investigated as organocatalytic Lewis bases in the
R-amination of ethyl R-phenyl-R-cyanoacetate. For com-
parison purposes, a few natural products were also examined
as catalysts in this study. Among the results obtained, (R)-
N-benzyl-N-(1-phenylethyl)-amine and (R,R)-N,N′-bis(1-phen-
ylethyl)-propane-1,3-diamine as the catalysts afforded the
amination products in excellent yields and with up to 84%
ee. By contrast, under comparable conditions the two
derivatives of natural products (DHQ)2PYR and (DHQD)2PYR
provided the product of amination with lower than 10%
enantiomeric excess.
(4) Xu, X.; Yabata, T.; Yuam, P.; Takemoto, Y. Synlett 2006, 137-
140.
(5) Review: Guillena, G.; Ramo´n, D. J. Tetrahedron: Asymmetry 2006,
17, 1465-1492.
(6) (a) Suri, J. T.; Steiner, D. D.; Barbas, C. F., III. Org. Lett. 2005, 7,
3885-3888. (b) Poulsen, T. B.; Alemparte, C.; Jørgensen, K. A. J. Am.
Chem. Soc. 2005, 127, 11614-11615.
(7) See, for example: (a) Williams, R. M.; Hendrix, J. A. Chem. ReV.
1992, 92, 889-917. (b) Cativiela, C.; D´ıaz, de Villegas, M. D. Tetrahe-
dron: Asymmetry 1998, 9, 3517-3599. (c) Cativiela, C.; D´ıaz, de Villegas,
M. D. Tetrahedron: Asymmetry 2000, 11, 645-732. (d) EnantioselectiVe
Synthesis of â-Amino Acids, 2nd ed.; Juaristi, E., Soloshonok, V., Eds.;
Wiley: New York, 2005.
Ongoing studies in our group on the enantioselective synthesis
of amino acids1 brought our attention to the very recently
reported organocatalytic enantioselective electrophilic amination
reactions of R-substituted R-cyanoacetates and R-substituted
â-ketoesters with azodicarboxylates.2-5 Indeed, the R-aminated
products thus formed have the potential to be converted to either
(8) (a) Kocovsky, P.; Malkov, A. V., Eds. Tetrahedron 2006, 62, 257-
502. (b) Berkessel, A.; Gro¨ger, H. Asymmetric Organocatalysis: From
Biomimetic Concepts to Applications in Asymmetric Synthesis; Wiley-
VCH: Weinheim, 2005. (c) Dalko, P. I.; Moisan, L. Angew. Chem., Int.
Ed. 2004, 43, 5138-5175. (d) Houk, K. N.; List, B., Eds. Acc. Chem. Res.
2004, 37, 488-631. (e) List, B.; Bolm, C., Eds. AdV. Synth. Catal. 2004,
346, 1023-1246. (f) Benaglia, M.; Puglisi, A.; Cozzi, F. Chem. ReV. 2003,
103, 3401-3430.
* To whom correspondence should be addressed. Tel: +52-55 5061 3722.
Fax: +52-55 5061 3389.
(9) Blaser, H.-U. Chem. Commun. 2003, 293-296.
(1) See, for example: (a) Avila-Ortiz, C. G.; Reyes-Rangel, G.; Juaristi,
E. Tetrahedron 2005, 61, 8372-8381. (b) Castellanos, E.; Reyes-Rangel,
G.; Juaristi, E. HelV. Chim. Acta 2004, 87, 1010-1024. (c) Juaristi, E.;
Leo´n-Romo, J. L.; Ram´ırez-Quiro´s, Y. J. Org. Chem. 1999, 64, 2914-
2918. (d) Juaristi, E.; Lo´pez-Ruiz, H.; Madrigal, D.; Ram´ırez-Quiro´s, Y.;
Escalante, J. J. Org. Chem. 1998, 63, 4706-4710. (e) Juaristi, E.; Quintana,
D.; Balderas, M.; Garc´ıa-Pe´rez, E. Tetrahedron: Asymmetry 1996, 7, 2233-
2246. (f) Juaristi, E.; Escalante, J. J. Org. Chem. 1993, 58, 2282-2285.
(g) Juaristi, E.; Escalante, J.; Lamatsch, B.; Seebach, D. J. Org. Chem.
1992, 57, 2396-2398. (h) Juaristi, E.; Quintana, D.; Lamatsch, B.; Seebach,
D. J. Org. Chem. 1991, 56, 2553-2557.
(10) (a) Eder, U.; Sauer, G.; Wiechert, R. Angew. Chem., Int. Ed. 1971,
83, 492-493. (b) Parrish, R. D.; Hajos, Z. G. J. Org. Chem. 1974, 39,
1615-1621.
(11) (a) Northrup, A.; MacMillan, D. W. C. J. Am. Chem. Soc. 2002,
124, 6798-6799. (b) Hoang, L.; Bahmanyar, S.; Houk, K. N.; List, B. J.
Am. Chem. Soc. 2003, 125, 16-17. (c) Allemann, C.; Gordillo, R.;
Clemente, F. R.; Cheong, P. H.-Y.; Houk, K. N. Acc. Chem. Res. 2004, 37,
558-569. (d) Chowdari N. S.; Barbas, C. F., III. Org. Lett. 2005, 7, 867-
870. (e) Suri, J. T.; Steiner, D. D.; Barbas, C. F., III. Org. Lett. 2005, 7,
3885-3888. (f) Vogt, H.; Vanderheiden, S.; Brase, S. Chem. Commun. 2003,
2448-2449. (g) Co´rdova, A.; Barbas, C. F., III. Tetrahedron Lett. 2003,
44, 1923-1926.
(2) (a) Bogevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2002, 41, 1790-1793. (b) List,
B. J. Am. Chem. Soc. 2002, 124, 5656-5657. (c) Marigo, M.; Juhl, K.;
Jørgensen, K. A. Angew. Chem., Int. Ed. 2003, 42, 1367-1369. (d) Pihko,
P. M.; Pohjakallio, A. Synlett 2004, 2115-2118. (e) Saaby, S.; Bella, M.;
Jørgensen, K. A. J. Am. Chem. Soc. 2004, 126, 8120-8121.
(12) (a) Cobb, A. J. A.; Shaw, D. M.; Ley, S. V. Synlett 2004, 558-
560. (b) Dickerson, T. J.; Janda, K. D. J. Am. Chem. Soc. 2002, 124, 3220-
3221. (c) Nakadai, M.; Saito, S.; Yamamoto, H. Tetrahedron 2002, 58,
8167-8177. (d) Fache, F.; Piva, O.; Tetrahedron: Asymmetry 2003, 14,
139-143. (e) Tang, Z.; Jiang, F.; Yu, L.-T.; Cui, X.; Gong, L.-Z.; Mi, A.-
Q.; Jiang, Y.-Z.; Wu, Y.-D. J. Am. Chem. Soc. 2003, 125, 5262-5263.
(3) Liu, X.; Li, H; Deng, L. Org. Lett. 2005, 7, 167-169.
10.1021/jo0622633 CCC: $37.00 © 2007 American Chemical Society
Published on Web 01/18/2007
1522
J. Org. Chem. 2007, 72, 1522-1525