3 (a) M. J. Kiefel and M. von Itzstein, Chem. Rev., 2002, 102, 471 and
references therein; (b) A. Varki, Glycobiology, 1992, 2, 25; (c) F. A. Troy,
II, Glycobiology, 1992, 2, 5.
the proline catalyzed aldol reaction might easily be scaled up to
yield gram amounts of key intermediates for the synthesis of
biologically challenging molecules. The high stereoselectivity of our
protocol as well as the broad range of proline organocatalysis
makes it suitable to a wide scope of substrates. Moreover, the
availability of both enantiomeric forms of proline combined with
the typically mild conditions and the exceedingly simple protocol
avoid the use of protecting group manipulations and open a
straightforward access for the synthesis of acid sugars.
4 B. Lindberg, Adv. Carbohydr. Chem. Biochem., 1990, 48, 279.
5 D. H. Levin and E. Racker, J. Biol. Chem., 1959, 234, 2532.
6 (a) B. Ganem, Tetrahedron, 1978, 34, 3353; (b) E. Haslam, Shikimic
Acid. Metabolism and Metabolites, Wiley, New York, 1993.
7 N. Entner and M. Doudoroff, J. Biol. Chem., 1952, 196, 853.
8 (a) S. J. Danishefsky, M. P. DeNinno and S.-H. Chen, J. Am. Chem.
Soc., 1988, 110, 3929; (b) M. P. DeNinno, Synthesis, 1991, 583; (c)
M. von Itzstein and M. J. Kiefel in Carbohydrates in Drug Design, ed.
Z. J. Witezak and K. A. Nieforth, Marcel Decker, New York, 1997; (d)
M. Banwell, C. De Savi and K. Watson, J. Chem. Soc., Perkin Trans. 1,
1998, 2251; (e) E. A. Voight, C. Rein and S. D. Burke, J. Org. Chem.,
2002, 67, 8489; (f) M. G. Silvestri, G. Desantis, M. Mitchell and
C. H. Wong, Top. Stereochem., 2003, 23, 267.
This work was supported by the Fonds der Chemischen
Industrie. We wish to thank Dr J. W. Bats, University of
Frankfurt for the X-ray structure determination of (R,S)-8d. We
thank BASF AG, Degussa AG, Bayer AG and Wacker-Chemie
for the donation of chemicals.
9 (a) T. Sugai, G.-J. Shen, Y. Ichikawa and C. H. Wong, J. Am. Chem.
Soc., 1993, 115, 413; (b) A. Dondoni, A. Marra and P. Merino, J. Am.
Chem. Soc., 1994, 116, 3324; (c) L.-S. Li and Y.-L. Wu, Tetrahedron,
2002, 58, 9049; (d) A. Banaszek and J. Mlynarski, Stud. Nat. Prod.
Chem., 2005, 30, 419.
Notes and references
10 (a) M. Banwell, C. De Savi, D. Hockless and K. Watson, Chem.
Commun., 1998, 645; (b) M. D. Chappell and R. L. Halcomb, Org. Lett.,
2000, 2, 2003; (c) M. Warwel and W.-D. Fessner, Synlett, 2002, 2104; (d)
M. G. Banwell, N. L. Hungerford and K. A. Jolliffe, Org. Lett., 2004, 6,
2737.
11 (a) L.-S. Li and Y.-L. Wu, Curr. Org. Chem., 2003, 7, 447 and references
therein; (b) B. G. Kim, U. Schilde and Y. Linker, Synthesis, 2005, 1507;
(c) M. S. M. Timmer, A. Adibekian and P. H. Seeberger, Angew. Chem.,
Int. Ed., 2005, 44, 7605.
12 (a) C. Auge, B. Bouxom, B. Cavaye and C. Gautheron, Tetrahedron
Lett., 1989, 30, 2217; (b) M. J. Kim, W. J. Hennen, H. M. Sweers and
C. H. Wong, J. Am. Chem. Soc., 1988, 110, 6481; (c) C. H. Wong and
G. M. Whitesides, Enzymes in Synthetic Organic Chemistry,
Tetrahedron Organic Chemistry Series, vol. 12, Pergamon, Oxford,
1994.
13 (a) T. Ogawa, Chem. Soc. Rev., 1994, 23, 397; (b) S. J. Danishefsky and
M. T. Bilodeau, Angew. Chem., Int. Ed. Engl., 1996, 35, 1380; (c)
Preparative Carbohydrate Chemistry, ed., S. Hanessian, Marcel Decker
Inc., New York, 1997; (d) T. Hudlicky, D. A. Entwistle, K. K. Pitzer
and A. J. Thorpe, Chem. Rev., 1996, 96, 1195.
14 (a) V. Kikelj, R. Plantier-Royon and C. Portella, Synthesis, 2006, 1200;
(b) H. Tanaka, D. Takahashi and T. Takahashi, Angew. Chem., Int. Ed.,
2006, 45, 770; (c) H. Yu, S. Huang, H. Chokhhawala, M. Sun, H. Zheng
and X. Chen, Angew. Chem., Int. Ed., 2006, 45, 3938.
15 (a) D. Enders, H. Dyker, G. Raabe and J. Runsink, Synlett, 1992, 901;
(b) D. Enders, H. Dyker and G. Raabe, Angew. Chem., Int. Ed. Engl.,
1993, 32, 421.
16 (a) D. Enders and C. Grondal, Angew. Chem., Int. Ed., 2005, 44, 1210;
(b) D. Enders and C. Grondal, Tetrahedron, 2006, 62, 325; (c) D. Enders,
C. Grondal, M. Vrettou and G. Raabe, Angew. Chem., Int. Ed., 2005,
{ Unless otherwise stated, all chemicals are commercially available and
were used without further purification. All new compounds were fully
characterized (IR, NMR, MS, elemental analysis, optical rotation). (S,R)-
8c: To a suspension of (R)-proline (172.5 mg, 1.5 mmol, 30 mol%) in
DMSO (2.0 mL) the pyruvic aldehyde dimethyl acetal 7 (2.95 g, 25 mmol)
was added. The suspension was stirred at 4 uC for 2 h after which freshly
distilled aldehyde 6c (650 mg, 5 mmol) was slowly added. The mixture
became completely clear within ca. 30 min. After 5 days at 4 uC (R)-proline
precipitated, the reaction was quenched with sat. ammonium chloride
solution (5 mL) and extracted with ethyl acetate (3 6 15 mL). The
combined organic layers were washed with brine, dried (MgSO4),
concentrated and purified by flash chromatography (silica gel, pentane :
ethyl acetate, 6 : 4). The product (S,R)-8c (533.2 mg, 43%) was obtained as
a colourless solid. Mp = 45 uC (Et2O:pentane); [a]2D4 219.5 (c 1.13 in
CHCl3); Found C, 53.0; H, 8.1. Calc. for: C11H20O6: C, 53.2, H, 8.11; IR
(CHCl3 ): nmax/cm21 3471, 2986, 2938, 2361, 2335, 1733, 1376, 1254, 1214,
1068, 852; 1H NMR dH (400 MHz, CDCl3, Me4Si) 1.30 (s, 3H, CCH3),
1.36 (s, 3H, CCH3), 2.69 (dd, 1H, COCHH, J 17.8 Hz, J 9.0 Hz), 2.92 (dd,
1H, COCHH, J 17.8 Hz, J 2.7 Hz), 3.03 (bs, 1H, OH), 3.44 (s, 6H, OCH3),
3.93–4.05 (m, 2H, OCH2), 4.04–4.12 (m, 2H, CH2CHOH, OCHCH2O),
4.45 (s, 1H, CH(OCH3)2; 13C NMR dC (125 MHz; CDCl3) 25.1 (CCH3),
26.6 (CCH3), 41.1 (CCH2), 54.7 (OCH3) 54.7(OCH3), 66.5 (CH2O), 68.3
(CCH2CHO), 77.6 (OCH2CHO), 103.7 (CHOCH3), 109.3 (C(CH3)2),
205.4 (CO); m/z (CI, methane): 249 (M+ + 1, 1), 231 (M+ 2 17, 100), 217
(M+ 2 31, 37), 185 (M+ 2 63, 78) 159 (M+ 2 89, 86).
§ Crystal data for (R,S)-8d: C16H29NO7, M = 347.40 g mol21, monoclinic,
˚
˚
˚
space group P21, a = 10.7551(14) A, b = 6.1499(5) A, c = 13.849(3) A, a =
3
˚
90u, b = 96.077(10)u, c = 90u, V = 910.8(2) A , Z = 2, calculated density r =
1.267 mg m23, m = 0.099 mm21, F(000) = 376, crystal size = 0.55 6 0.50 6
˚
0.14 mm, T = 159(2) K, l = 0.71073 A. Total reflections collected 16581
ˇ
44, 4079; (d) D. Enders, J. Palecek and C. Grondal, Chem. Commun.,
(1.90 , h , 33.52u), 3651 unique [R(int) = 0.0301]. Final R indices [I .
2s(I)]: R1 = 0.0314, wR2 = 0.0788; R indices (all data): R1 = 0.0366, wR2 =
0.0829. The structure was refined on F2 value using program SHELXL-97.
CCDC 617147. For crystallographic data in CIF or other electronic format
see DOI: 10.1039/b611265j
2006, 655; (e) D. Enders and M. Vrettou, Synthesis, 2006, 2155; (f)
D. Enders, M. Voith and A. Lenzen, Angew. Chem., Int. Ed., 2005, 44,
1304.
17 (a) N. Mase, F. Tanaka and C. F. Barbas, III, Angew. Chem.,
Int. Ed., 2004, 43, 2420; (b) Z. Tang, Z. Yang, L. Cun, L. Gong, A. Mi
and Y. Jiang, Org. Lett., 2004, 6, 2285; (c) P. Dambruso, A. Massi and
A. Dondoni, Org. Lett., 2005, 7, 4657; (d) S. S. Chimmi and
D. Mahajan, Tetrahedron, 2005, 61, 5019; (e) A. J. A. Cobb,
D. M. Shaw, D. A. Longbottom, J. B. Gold and S. V. Ley,
Org. Biomol. Chem., 2005, 3, 84; (f) Z. Tang, Z. Yang, L. Cun, A. Mi,
Y. Jiang and L. Gong, J. Am. Chem. Soc., 2005, 127, 9285.
18 B. List, P. Pojarliev and C. Castello, Org. Lett., 2001, 3, 573.
19 K. Narasaka and F. Pai, Tetrahedron, 1984, 40, 2233.
20 S. Bahmanyar, K. N. Houk, H. J. Martin and B. List, J. Am. Chem.
Soc., 2003, 125, 2475.
1 (a) A. Varki, Glycobiology, 1993, 3, 97; (b) R. A. Dwek, Chem. Rev.,
1996, 96, 683; (c) P. Sears and C. H. Wong, Cell. Mol. Life Sci., 1998,
54, 223.
2 (a) F. M. Unger, Adv. Carbohydr. Chem. Biochem., 1981, 38, 323; (b)
R. Schauer, Adv. Carbohydr. Chem. Biochem., 1982, 40, 131; (c) Sialic
Acids–Chemistry, Metabolism & Function, Cell Biology Monographs, vol.
10, ed. R. Schauer, Springer Verlag, New York, 1982; (d) C. Alexander
and E. T. Rietschel, Biospektrum, 1999, 4, 275; (e) T. Angata and
A. Varki, Chem. Rev., 2002, 102, 439 and references therein.
90 | Chem. Commun., 2007, 88–90
This journal is ß The Royal Society of Chemistry 2007