Published on Web 11/07/2003
Dendrimer-Encapsulated Nanoparticle Precursors to
Supported Platinum Catalysts
Huifang Lang, R. Alan May, Brianna L. Iversen, and Bert D. Chandler*
Contribution from the Department of Chemistry, Trinity UniVersity, One Trinity Place,
San Antonio, Texas 78212-7200
Received May 29, 2003; E-mail: bert.chandler@trinity.edu
Abstract: In this contribution, we report the successful preparation of supported metal catalysts using
dendrimer-encapsulated Pt nanoparticles as metal precursors. Polyamidoamine (PAMAM) dendrimers were
first used to template and stabilize Pt nanoparticles prepared in solution. These dendrimer-encapsulated
nanoparticles were then deposited onto a commercial high surface area silica support and thermally activated
to remove the organic dendrimer. The resulting materials are active oxidation and hydrogenation catalysts.
The effects of catalyst preparation and activation on activity for toluene hydrogenation and CO oxidation
catalysis are discussed.
Introduction
plated iron oxide nanoparticles have been used as precursors
for the synthesis of carbon nanotubes.18 In this manuscript, we
Polyamidoamine (PAMAM) dendrimers have drawn consid-
erable interest in recent years due to their potential applications
in medicine, nanotechnology, and catalysis.1-5 These macro-
molecules can also be functionalized to incorporate transition
metal complexes into the dendrimer backbone; such function-
alized dendrimers have shown a variety of novel properties when
employed as homogeneous catalysts.4,5 Functionalized or modi-
fied PAMAM dendrimers can also be immobilized on solid sup-
ports and employed as “heterogenized” homogeneous catalysts.6-8
The ability to control dendrimer interior/exterior functional-
ities and the macromolecular architecture of PAMAM den-
drimers (open spaces within the interior) also create an ideal
environment for trapping guest species.9,10 Specifically, PAM-
AM dendrimers can bind a defined number of transition metal
cations and thus template and stabilize metal oxide or metal
nanoparticles.3,11,12 Templated Pt, Pd, and Pt-Pd nanoparticles
have been employed as homogeneous catalysts,13-17 and tem-
report a new application of dendrimer-encapsulated nanopar-
ticles: as precursors to supported metal particle catalysts
(Scheme 1).
Finely dispersed metal nanoparticles supported on inorganic
oxide carriers are a mainstay of commercial heterogeneous
catalysts.19 These supported-metal catalysts are generally pre-
pared via impregnation of metal salts onto an oxide support,
followed by high-temperature oxidation and/or reduction.19
Because such methods are relatively inexpensive, they are
widely applied with numerous metals and supports; however,
they provide limited control over particle size and distribution
in the ultimate catalyst. This is a considerable drawback to
studying and understanding the catalytic mechanisms at work
on these catalysts.
Dendrimer-encapsulated metal nanoparticles (DENs), on the
other hand, can be prepared in solution with reproducible and
variable synthetic schemes. Utilizing DENs as catalyst precur-
sors offers the opportunity to exert a degree of control over
metal particle size and composition, while varying the carrier
or substrate (see Scheme 1). The potential to ultimately control
nanoparticle size and composition11,17,20 makes DENs extremely
attractive as potential precursors for studying supported-metal
catalysts. Because the particles are prepared ex situ and can be
deposited onto a substrate or support, DENs offer the op-
portunity to bridge the gap between surface science studies of
model systems and real world catalysts on high surface area
(1) Zeng, F.; Zimmerman, S. C. Chem. ReV. 1997, 97, 1681.
(2) Bosman, A. W.; Janssen, H. M.; Meijer, E. W. Chem. ReV. 1999, 99, 1665.
(3) Crooks, R. M.; Lemon, B. I.; Sun, L.; Yeung, L. K.; Zhao, M. Top. Curr.
Chem 2001, 212, 82-135.
(4) Twyman, L. J.; King, A. S. H.; Martin, I. K. Chem. Soc. ReV. 2002, 31,
69-82.
(5) Kreiter, R.; Kleij, A. W.; Gebbink, R. J. M.; van Koten, G. Top. Curr.
Chem 2001, 217, 163-199.
(6) Chung, Y.-M.; Rhee, H.-K. Chem. Commun. 2002, 238-239.
(7) Antebi, S.; Arya, P.; Manzer, L. E.; Alper, H. J. Org. Chem. 2002, 67,
6623-6631.
(8) Alper, H.; Arya, P.; Borque, S. C.; Jefferson, G. R.; Manzer, L. E. Can. J.
Chem. 2000, 78, 920-924.
(9) Fisher, M.; Vogtle, F. Angew. Chem., Int. Ed. Engl. 1999, 38, 884.
(10) Cooper, A. I.; Londono, J. D.; Wignall, G.; McClain, J. B.; Samulski, E.
T.; Lin, J. S.; Dobrynin, A.; Rubinstein, M.; Burke, A. L. C.; Frechet, J.
M. J.; DeSimone, J. M. Nature 1997, 389, 368-371.
(11) Crooks, R. M.; Zhao, M.; Sun, L.; Chechik, V.; Yeung, L. K. Acc. Chem.
Res. 2001, 34, 181-190.
(15) Ooe, M.; Murata, M.; Mizugaki, T.; Ebitani, K.; Kaneda, K. Nano Lett.
2002, 2, 999-1002.
(16) Niu, Y. H.; Yeung, L. K.; Crooks, R. M. J. Am. Chem. Soc 2001, 123,
6840-6846.
(17) Chung, Y.-M.; Rhee, H.-K. Catal. Lett. 2003, 85, 159-164.
(18) Choi, H. C.; Kim, W.; Wang, D.; Dai, H. J. Phys. Chem. B 2002, 106,
12361-12365.
(19) Ponec, V.; Bond, G. C. Catalysis by Metals and Alloys; Elsevier:
Amsterdam, 1995; Vol. 95.
(20) Scott, R. W. J.; Datye, A. K.; Crooks, R. M. J. Am. Chem. Soc. 2003, 123,
3708-3709.
(12) Ottaviani, M. F.; Montalti, F.; Turro, N. J.; Tomalia, D. A. J. Phys. Chem.
B 1997, 101, 158-166.
(13) Yeung, L. K.; Lee, C. T.; Johnston, K. P.; Crooks, R. M. Chem. Commun.
2001, 21, 2290-2291.
(14) Rahim, E. H.; Kamounah, F. S.; Frederiksen, J.; Christensen, J. B. Nano
Lett. 2001, 1, 499-501.
9
14832
J. AM. CHEM. SOC. 2003, 125, 14832-14836
10.1021/ja0364120 CCC: $25.00 © 2003 American Chemical Society