A. Hedström et al. / Journal of Organometallic Chemistry xxx (2013) 1e5
5
4.2. Addition of cyclohexyl bromide
References
[1] Y.D. Perfiliev, V.K. Sharma, Higher oxidation states of iron in solid state:
synthesis and their Mössbauer characterization, in: V.K. Sharma (Ed.), Fer-
rates, vol. 985, American Chemical Society, 2008, pp. 112e123.
[2] B. Plietker, Iron Catalysis in Organic Chemistry, Wiley-VCH, Weinheim, 2008.
[3] J.F. Hartwig, Organotransition Metal Chemistry: From Bonding to Catalysis,
University Science Books, Sausalito, 2009.
An oven-dried dry 100 mL round-bottomed flask was equipped
with a rubber septum and a stirrer bar, then evacuated and refilled
with nitrogen three times. The flask was charged with DEE (60 ml),
dodecane (225
ml, 1 mmol) and phenyl magnesium bromide
(1.2 mmol, 1.97 M in DEE). An aliquot (0.5 ml) was taken from the
mixture and quenched by filtering it through a wet short silica plug
with a pentane layer above the silica under nitrogen (see Section
4.1). The sample was eluted with pentane into a degassed sat. NH4Cl
solution. The organic phase was diluted with DEE and analyzed by
GC (dodecane was used as internal standard, 40e100 ꢁC 18 ꢁC/min,
100e300 ꢁC, 20 ꢁC/min). A solution of FeCl3 (0.06 mmol, 0.05 M in
THF) was added to the reaction vessel. After stirring for 5 min, an
aliquot (0.5 ml) was collected and analyzed as described above. A
solution of cyclohexyl bromide (0.03 mmol, 0.5 M in THF) was
added to the reaction vessel. After stirring for 5 min, an aliquot
(0.5 ml) was collected and analyzed as described above. The pro-
cedure was repeated with alternating addition of FeCl3 (0.05 M in
THF) and cyclohexyl bromide (0.5 M in THF).
[4] M. Tamura, J. Kochi, J. Organomet. Chem. 31 (1971) 289e309.
[5] M. Tamura, J. Kochi, Synthesis 6 (1971) 303e305.
[6] M. Tamura, J.K. Kochi, J. Am. Chem. Soc. 93 (1971) 1487e1489.
[7] M. Tamura, J.K. Kochi, Bull. Chem. Soc. Jpn. 44 (1971) 3063e3073.
[8] R.S. Smith, J.K. Kochi, J. Org. Chem. 41 (1976) 502e509.
[9] S.M. Neumann, J.K. Kochi, J. Org. Chem. 40 (1975) 599e606.
[10] L.E. Aleandri, B. Bogdanovic, P. Bons, C. Duerr, A. Gaidies, T. Hartwig,
S.C. Huckett, M. Lagarden, U. Wilczok, R.A. Brand, Chem. Mater. 7 (1995)
1153e1170.
[11] B. Bogdanovic, M. Schwickardi, Angew. Chem. Int. Ed. 39 (2000) 4610e4612.
[12] A. Fuerstner, A. Leitner, M. Mendez, H. Krause, J. Am. Chem. Soc. 124 (2002)
13856e13863.
[13] A. Fuerstner, A. Leitner, Angew. Chem. Int. Ed. 41 (2002) 609e612.
[14] A. Furstner, R. Martin, H. Krause, G. Seidel, R. Goddard, C.W. Lehmann, J. Am.
Chem. Soc. 130 (2008) 8773e8787.
[15] Q. Ren, S. Guan, F. Jiang, J. Fang, J. Phys. Chem. A 117 (2013) 756e764.
[16] K. Weber, E.-M. Schnöckelborg, R. Wolf, Chem. Cat Chem. 3 (2011) 1572e
1577.
[17] J. Kleimark, A. Hedström, P.-F. Larsson, C. Johansson, P.-O. Norrby, Chem. Cat
Chem. 1 (2009) 152e161.
[18] J. Kleimark, P.-F. Larsson, P. Emamy, A. Hedström, P.-O. Norrby, Adv. Synth.
Catal. 354 (2012) 448e456.
5. Computational details
[19] P. N Hawker, M.V. Twigg, Iron(II) and Lower States, in: G. Wilkinson (Ed.),
Comprehensive Coordination Chemistry, Pergamon, Oxford, 1987, pp. 1179e
1270.
[20] S.A. Stoian, Y. Yu, J.M. Smith, P.L. Holland, E.L. Bominaar, E. Munck, Inorg.
Chem. 44 (2005) 4915e4922.
[21] C. Ni, D. Ellis Bobby, C. Fettinger James, J. Long Gary, P. Power Philip, Chem.
Commun. (2008) 1014e1016.
[22] M.V. Rajasekharan, S. Giezynski, J.H. Ammeter, N. Oswald, P. Michaud,
J.R. Hamon, D. Astruc, J. Am. Chem. Soc. 104 (1982) 2400e2407.
[23] M. Gargano, P. Giannoccaro, M. Rossi, G. Vasapollo, A. Sacco, J. Chem. Soc.
Dalton Trans. (1975) 9e12.
[24] P. Giannoccaro, A. Sacco, S.D. Ittel, M.A. Cushing, Bis[ethyl-
enebis(diphenylphosphine)]-hydridoiron complexes, in: A.G. MacDiarmid
(Ed.), Inorganic Syntheses, vol. 17, John Wiley & Sons, Inc, Hoboken, 2007, pp.
69e72.
[25] C.J. Adams, R.B. Bedford, E. Carter, N.J. Gower, M.F. Haddow, J.N. Harvey,
M. Huwe, M.Á. Cartes, S.M. Mansell, C. Mendoza, D.M. Murphy, E.C. Neeve,
J. Nunn, J. Am. Chem. Soc. 134 (2012) 10333e10336.
[26] G. Cahiez, H. Avedissian, Synthesis 8 (1998) 1199e1205.
[27] W.M. Czaplik, M. Mayer, J. Cvengros, A. Jacobi von Wangelin, Chem. Sus Chem.
2 (2009) 396e417.
[28] B.D. Sherry, A. Fuerstner, Acc. Chem. Res. 41 (2008) 1500e1511.
[29] T. Nagano, T. Hayashi, Org. Lett. 6 (2004) 1297e1299.
[30] M. Nakamura, K. Matsuo, S. Ito, E. Nakamura, J. Am. Chem. Soc. 12 (2004)
3686e3687.
All DFT calculations were performed in Jaguar 8.0 from Schrö-
dinger [37]. We utilized the B3LYP-D3 method, which combines the
recent dispersion correction developed by Grimme and coworkers
[38] in conjunction with the B3LYP functional [39e41]. The basis set
was LACVP*, a combination of 6-31G* for light elements together
with the Hay-Wadt ECP basis for Fe and Br [42]. Geometries were
optimized in gas phase, with explicit solvent molecules modeled by
dimethyl ether (DME). Thermodynamic corrections to the free en-
ergy were obtained from frequency calculations at the optimized
geometries. Energies in solvent were calculated using the PBF im-
plicit solvation model at the optimized gas phase geometries
[43,44]. All reported energies are final free energies obtained by
addition of the thermodynamic correction (including zero point
energy correction) from the frequency calculation to the energies in
solvent calculated using PBF. The number of explicit solvent models
was optimized for each species, as judged by the calculated free
energies. We note that the use of gas phase vibrational entropies
will slightly favor dissociation of the explicit solvents; no attempt
was made to correct for this systematic error.
For all iron-containing complexes, we used the unrestricted
method to converge the open-shell wavefunctions. The <S2>
values were inspected after each calculation and, if the value was
more than a few percent above the theoretical expectation, a
restricted open shell wavefunction was calculated and used as an
initial guess in the unrestricted calculation. In all cases, this pro-
cedure yielded acceptable values of <S2>. All possible spin states
(S ¼ 1/2, 3/2, and for Fe(III) also 5/2) were calculated.
[31] A. Hedström, U. Bollmann, J. Bravidor, P.-O. Norrby, Chem. Eur. J. 17 (2011)
11991e11993.
[32] M.S. Kharasch, E.K. Fields, J. Am. Chem. Soc. 63 (1941) 2316e2320.
[33] P.-F. Larsson, A. Correa, M. Carril, P.-O. Norrby, C. Bolm, Angew. Chem. Int. Ed.
48 (2009) 5691e5693;
See also: S.L. Buchwald, C. Bolm Angew. Chem. Int. Ed. 48 (2009) 5586e5587;
I. Thomé, A. Nijs, C. Bolm, Chem. Soc. Rev. 41 (2012) 979e987.
[34] S. Mossin, B.L. Tran, D. Adhikari, M. Pink, F.W. Heinemann, J. Sutter, R.K. Szilagyi,
K. Meyer, D.J. Mindiola, J. Am. Chem. Soc. 134 (2012) 13651e13661.
[35] C.L. McMullin, J. Jover, J.N. Harvey, N. Fey, Dalton Trans. 39 (2010)
1083310836.
[36] A. Krasovskiy, P. Knochel, Synthesis 5 (2006) 0890e0891.
[37] Jaguar, Version 8.0, Schrodinger, LLC, New York, NY, 2011. For the most recent
Acknowledgments
[38] S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 132 (2010) 154104.
[39] A.D. Becke, J. Chem. Phys. 98 (1993) 5648.
[40] C.T. Lee, W.T. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785e789.
[41] P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Frisch, J. Phys. Chem. 98 (1994)
11623e11627.
This work has been supported by the Swedish Research Council,
grant no. 2010-4856. We are grateful to Professor Michael L. Neidig
for illuminating discussions while revising the current manuscript.
[42] P.J. Hay, W.R. Wadt, J. Chem. Phys. 82 (1985) 299.
[43] B. Marten, K. Kim, C. Cortis, R.A. Friesner, R.B. Murphy, M.N. Ringnalda,
D. Sitkoff, B. Honig, J. Phys. Chem. 100 (1996) 11775.
Appendix A. Supplementary data
[44] D.J. Tannor, B. Marten, R. Murphy, R.A. Friesner, D. Sitkoff, A. Nicholls,
M. Ringnalda, W.A. Goddard, B. Honig, J. Am. Chem. Soc. 116 (1994)
11875.
Supplementary data related to this article can be found at
j.jorganchem.2013.04.024