P. Castaño et al. / Journal of Catalysis 267 (2009) 30–39
39
[12] A.M. Venezia, V. La Parola, G. Deganello, B. Pawelec, J.L.G. Fierro, J. Catal. 215
(2003) 317.
ꢅ The critical parameter when designing Au supported on HMS
catalyst is the exposure of Aud+ species. Indeed, a linear correla-
tion between this parameter and the activity, in terms of QTOF,
is presented.
ꢅ In the Au/HMS–Ce catalyst, Ce is not incorporated into the
framework of HMS leading to clusters of Au and CeO2. This
causes the difficulty of calculating accurate values of DpAu from
HRTEM.
ꢅ The modification of HMS by Ti does not lead to any enhance-
ment of the hydrogenation performance of the Au/HMS catalyst
due to the sintering of Ti (confirmed by XPS) which blocks part
of the Au surface.
[13] A.M. Venezia, V. La Parola, V. Nicoli, G. Deganello, J. Catal. 212 (2002) 56.
[14] A. Hugon, L. Delannoy, C. Louis, Gold Bull. 41 (2008) 127.
[15] X. Zhang, H. Shi, B. Xu, Angew. Chem. Int. Ed. 44 (2005) 7132.
[16] X. Zhang, H. Shi, B.-Q. Xu, Catal. Today 122 (2007) 330.
[17] L. Fu, N.Q. Wu, J.H. Yang, F. Qu, D.L. Johnson, M.C. Kung, H.H. Kung, V.P. Dravid,
J. Phys.Chem. B 109 (2005) 3704.
[18] X. Zhang, F.X. Llabrés i Xamena, A. Corma, J. Catal. 265 (2009) 155.
[19] R. Nava, J. Morales, G. Alonso, C. Ornelas, B. Pawelec, J.L.G. Fierro, Appl. Catal. A:
Gen. 321 (2007) 58.
[20] B. Pawelec, S. Damyanova, R. Mariscal, J.L.G. Fierro, I. Sobrados, J. Sanz, L.
Petrov, J. Catal. 223 (2004) 86.
[21] T.A. Zepeda, B. Pawelec, J.L.G. Fierro, T. Halachev, J. Catal. 242 (2006) 254.
[22] T.A. Zepeda, B. Pawelec, J.L.G. Fierro, T. Halachev, Appl. Catal. B: Environ. 71
(2007) 223.
ꢅ The Au/HMS–Fe is the most promising catalyst for the hydroge-
nation of aromatics due to its enhanced stability and second aro-
matic-ring hydrogenation rate.
[23] T. Chiranjeevi, P. Kumar, S.K. Maity, M.S. Rana, G.M. Dhar, T. Rao, Micropor.
Mesopor. Mater. 44 (2001) 547.
[24] N.Y. He, J.M. Cao, S.L. Bao, Q.H. Xu, Mater. Lett. 31 (1997) 133.
[25] H. Liu, G.Z. Lu, Y.L. Guo, Y. Guo, J.S. Wang, Micropor. Mesopor. Mater. 108
(2008) 56.
[26] K. Bachari, J.M.M. Millet, B. Benaichouba, O. Cherifi, F. Figueras, J. Catal. 221
(2004) 55.
[27] C. Milone, R. Ingoglia, L. Schipilliti, C. Crisafulli, G. Neri, S. Galvagno, J. Catal.
236 (2005) 80.
[28] S.C. Laha, P. Mukherjee, S.R. Sainkar, R. Kumar, J. Catal. 207 (2002) 213.
[29] B. Campo, M. Volpe, S. Ivanova, R. Touroude, J. Catal. 242 (2006) 162.
[30] P.T. Tanev, T.J. Pinnavaia, Science 267 (1995) 865.
[31] C.T. Kresge, M.E. Leonowicz, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992)
710.
[32] M.R. Riazi, Y.A. Roomi, Chem. Eng. Sci. 62 (2007) 6649.
[33] M.R. Riazi, J.H. Vera, Ind. Eng. Chem. Res. 44 (2005) 186.
[34] S. Toppinen, T. Salmi, T.K. Rantakyla, J. Aittamaa, Ind. Eng. Chem. Res. 36
(1997) 2101.
However, further investigation on the nature of the interaction
Au–CeO2 could yield more explanations with regard to the perfor-
mance of Au/HMS–Ce catalyst. The intrinsic activity per gmetal (ex-
posed, TOF; and total, QTOF) of all Au/HMS–M catalysts is
substantially lower than that of Pt–Pd-supported catalyst so that
new approaches are required for the application of Au-supported
catalyst in hydroprocessing of aromatics.
Acknowledgments
[35] P. Castaño, D. van Herk, M.T. Kreutzer, J.A. Moulijn, M. Makkee, Appl. Catal. B:
Environ. 88 (2009) 213.
[36] P.T. Tanev, M. Chibwe, T.J. Pinnavaia, Nature 368 (1994) 321.
[37] B.M. Weckhuysen, R.A. Schoonheydt, Catal. Today 49 (1999) 441.
[38] R.X. Li, S. Yabe, M. Yamashita, S. Momose, S. Yoshida, S. Yin, T. Sato, Mater.
Chem. Phys. 75 (2002) 39.
[39] Y. Wang, Q.H. Zhang, T. Shishido, K. Takehira, J. Catal. 209 (2002) 186.
[40] K. Bachari, J.M.M. Millet, P. Bonville, O. Cherifi, F. Figueras, J. Catal. 249 (2007)
52.
[41] S. Perathoner, P. Lanzafame, R. Passalacqua, G. Centi, R. Schlogl, D.S. Su,
Micropor. Mesopor. Mater. 90 (2006) 347.
[42] A.N. Pestryakov, V.V. Lunin, A.N. Kharlanov, N.E. Bogdanchikova, I.V.
Tuzovskaya, Europ. Phys. J. D 24 (2003) 307.
[43] P. Claus, A. Bruckner, C. Mohr, H. Hofmeister, J. Am. Chem. Soc. 122 (2000)
11430.
[44] F. Bauer, H.G. Karge, Characterization of coke on zeolites, in: H.G. Karge, J.
Weitkamp (Eds.), Molecular Sieves. Science and Technology, Characterization
II, Vol. 5, Springer-Verlag, Berlin-Heidelberg, 2007, p. 282.
[45] D.A. Bulushev, I. Yuranov, E.I. Suvorova, P.A. Buffat, L. Kiwi-Minsker, J. Catal.
224 (2004) 8.
[46] Z.Q. Zou, M. Meng, L.H. Guo, Y.Q. Zha, J. Hazar. Mater. 163 (2009) 835.
[47] P. Reyes, H. Rojas, J.L.G. Fierro, Appl. Catal. A: Gen. 248 (2003) 59.
[48] M.C. Capel-Sanchez, J.M. Campos-Martin, J.L.G. Fierro, M.P. de Frutos, A.P. Polo,
Chem. Commun. (2000) 855.
Financial support by CSIC, Comunidad de Madrid (project
CCG07-CSIC/ENE-1884) is gratefully acknowledged. T.A.Z. wishes
to express his gratitude to the CNyN-UNAM (Mexico) for a post-
doctoral bursary. The authors are grateful to G. Hosford, Dr. M.
Peña and Dr. R. Guil-López for their help.
References
[1] S.K. Samanta, O.V. Singh, R.K. Jain, Trends Biotechnol. 20 (2002) 243.
[2] P.J. Tsai, T.S. Shih, H.L. Chen, W.J. Lee, C.H. Lai, S.H. Liou, Atmos. Environ. 38
(2004) 333.
[3] A. Stanislaus, B.H. Cooper, Catal. Rev.Sci. Eng. 36 (1994) 75.
[4] G.C. Bond, D.T. Thompson, Catal. Rev. Sci. Eng. 41 (1999) 319.
[5] M. Haruta, N. Yamada, T. Kobayashi, S. Iijima, J. Catal. 115 (1989) 301.
[6] M.P. Casaletto, A. Longo, A.M. Venezia, A. Martorana, A. Prestianni, Appl. Catal.
A: Gen. 302 (2006) 309.
[7] A.S.K. Hashmi, G.J. Hutchings, Angew. Chem. Int. Ed. 45 (2006) 7896.
[8] P. Claus, Appl. Catal. A: Gen. 291 (2005) 222.
[9] A.M. Venezia, V. La Parola, B. Pawelec, J.L.G. Fierro, Appl. Catal. A: Gen. 264
(2004) 43.
[10] B. Pawelec, A.M. Venezia, V. La Parola, S. Thomas, J.L.G. Fierro, Appl. Catal. A:
Gen. 283 (2005) 165.
[11] B. Pawelec, A.M. Venezia, V. La Parola, E. Cano-Serrano, J.M. Campos-Martin,
J.L.G. Fierro, Appl. Surf. Sci. 242 (2005) 380.
[49] J. Kanai, J.A. Martens, P.A. Jacobs, J. Catal. 133 (1992) 527.