K. Li et al. / European Journal of Medicinal Chemistry 44 (2009) 1768e1772
1771
´
(b) M. Pitie, C.J. Burrows, B. Meunier, Nucleic Acids Res. 28 (2000)
4856e4864;
(c) M.E. Branum, A.K. Tipton, S. Zhu, L.J. Que, J. Am. Chem. Soc. 123
(2001) 1898e1904;
(d) E. Boseggia, M. Gatos, L. Lucatello, F. Mancin, J. Am. Chem. Soc.
126 (2004) 4543e4549.
[5] For oxidative pathways see: (a) U.S. Singh, R.T. Scannell, H. An,
B.J. Carter, S.M. Hecht, J. Am. Chem. Soc. 117 (1995) 12691e
12699;
(b) S. Oikawa, S. Kawanishi, Biochemistry 35 (1996) 4584e4590;
(c) C.A.I. Detmer, F.V. Pamatong, J.R. Bocarsly, Inorg. Chem. 35 (1996)
6292e6298;
(d) M. Gonzalez-Alvarez, G. Alzuet, J. Borras, B. Macias, A. Castineiras,
Inorg. Chem. 42 (2003) 2992e2998;
Fig. 3. Inhibition studies on the cleavage of pUC19 DNA (5 mg/mL) by com-
plex 7c (0.107 mM). Reactions were carried out for 6 h. Lane 1: DNA control;
lane 2: DNA þ7c þ 143 mM of NaI; lane 3: DNA þ 7c þ 143 mM of H2O2;
lane 4: DNA þ 7c þ 143 mM of DMSO; lane 5: DNA þ 7c þ 143 mM of
tert-butyl alcohol; lane 6: DNA þ 7c þ 143 mM of NaN3; lane 7:
DNA þ 143 mM of H2O2 þ 0.2 mM of CuSO4 [15]; lane 8: DNA þ 7c.
(e) C. Tu, Y. Shao, N. Gan, Q. Xu, Z. Guo, Inorg. Chem. 43 (2004)
4761e4766;
´
(f) B.C. Bales, T. Kodama, Y.N. Weledji, M. Pitie, B. Meunier,
M.M. Greenberg, Nucleic Acids Res. 33 (2005) 5371e5379.
[6] (a) P. Dumoulin, R.H. Ebright, R. Knegtel, R. Kaptein, M. Granger-
Schnarr, M. Schnarr, Biochemistry 35 (1996) 4279e4286;
(b) W. Adam, J. Hartung, H. Okamoto, S. Marquardt, W.M. Nau,
U. Pischel, C.R. Saha-Moller, K. Spehar, J. Org. Chem. 67 (2002)
6041e6049;
cleavage process. Effect of H2O2 on the reaction catalyzed
by 7c was also examined (lane 3), and the result showed
that H2O2 could enhance the cleavage activity dramatically,
which further supported the oxidative mechanism. Under
the same cleavage conditions, complex 7ceH2O2 system
could convert supercoiled DNA to small fragments, which
could not be detected by gel electrophoresis.
In conclusion, we designed and synthesized three novel fer-
rocenyl Cu(II)ecyclen complexes and applied them to cata-
lyze the cleavage of supercoiled pUC19 DNA. The results
demonstrated that the complexes 7aec are excellent chemical
nucleases. The cleavage might be carried out via an oxidative
pathway, and no reductant or oxidant was needed. Complex 7c
was found to be the most efficient reagent for DNA cleavage at
low concentration and in short time.
(c) P.J. Benites, R.C. Holmberg, D.S. Rawat, B.J. Kraft, L.J. Klein,
D.G. Peters, H.H. Thorp, J.M. Zaleski, J. Am. Chem. Soc. 125 (2003)
6434e6446;
(d) S. Dhar, M. Nethaji, A.R. Chakravarty, Inorg. Chem. 45 (2006)
11043e11050;
(e) M. Tanaka, K. Ohkubo, S. Fukuzumi, J. Am. Chem. Soc. 128 (2006)
12372e12373.
[7] (a) S. Borah, M.S. Melvin, N. Lindquist, R.A. Manderville, J. Am. Chem.
Soc. 120 (1998) 4557e4562;
(b) O. Baudoin, M.-P. Teulade-Fichou, J.-P. Vigneron, J.-M. Lehn, Chem.
Commun. (1998) 2349e2350;
(c) M.S. Melvin, J.T. Tomlinson, G.R. Saluta, G.L. Kucera, N. Lindquist,
R.A. Manderville, J. Am. Chem. Soc. 122 (2000) 6333e6334;
(d) G. Roelfes, M.E. Branum, L. Wang, L. Que Jr., B.L. Feringa, J. Am.
Chem. Soc. 122 (2000) 11517e11518;
(e) C. Sissi, F. Mancin, M. Gatos, M. Palumbo, P. Tecilla, U. Tonellato,
Inorg. Chem. 44 (2005) 2310e2317;
(f) P.U. Maheswari, S. Roy, H.d. Dulk, S. Barends, G.v. Wezel,
ˇ
B. Kozlevcar, P. Gamez, J. Reedijk, J. Am. Chem. Soc. 128 (2006)
710e711.
Acknowledgements
This work was financially supported by the National Sci-
ence Foundation of China (nos. 20725206, 20732004 and
20572075), Program for New Century Excellent Talents in
University, Specialized Research Fund for the Doctoral Pro-
gram of Higher Education and Scientific Fund of Sichuan
Province for Outstanding Young Scientist.
[8] (a) Q.-X. Xiang, J. Zhang, P.-Y. Liu, C.-Q. Xia, Z.-Y. Zhou, R.-G. Xie,
X.-Q. Yu, J. Inorg. Biochem. 99 (2005) 1661e1669;
(b) Q.-L. Li, J. Huang, G.-L. Zhang, N. Jiang, C.-Q. Xia, H.-H. Lin,
J. Wu, X.-Q. Yu, Bioorg. Med. Chem. 14 (2006) 4151e4157;
(c) C.-Q. Xia, L. Jiang, J. Zhang, S.-Y. Chen, H.-H. Lin, X.-Y. Tan,
Y. Yue, X.-Q. Yu, Bioorg. Med. Chem. 14 (2006) 5756e5764;
(d) X.-Y. Wang, J. Zhang, K. Li, N. Jiang, S.-Y. Chen, H.-H. Lin,
Y. Huang, L.-J. Ma, X.-Q. Yu, Bioorg. Med. Chem. 14 (2006)
6745e6751;
Appendix. Supporting information
(e) Y.-G. Fang, J. Zhang, S.-Y. Chen, N. Jiang, H.-H. Lin, Y. Zhang,
X.-Q. Yu, Bioorg. Med. Chem. 15 (2007) 696e701.
[9] (a) C. Biot, G. Glorian, L.A. Maciejewski, J.S. Brocard, O. Domarle,
G. Blampain, P. Millet, A.J. Georges, H. Abessolo, D. Dive, J. Lebibi,
J. Med. Chem. 40 (1997) 3715e3718;
Supplementary data associated with this article can be found
References
(b) O. Domarle, G. Blampain, H. Agnaniet, T. Nzadiyabi, J. Lebibi,
J. Brocard, L. Maciejewski, C. Biot, A.J. Georges, P. Millet, Antimicrob.
Agents Chemother. 42 (1998) 540e544;
[1] (a) A. Sreedhara, J.D. Freed, J.A. Cowan, J. Am. Chem. Soc. 122 (2000)
8814e8824;
(b) J.A. Cowan, Curr. Opin. Chem. Biol. 5 (2001) 634e642;
(c) J.A. Cowan, Y. Jin, J. Am. Chem. Soc. 127 (2005) 8408e8415.
[2] F. Manicin, P. Scrimin, P. Tecilla, U. Tonellato, Chem. Commun. (2005)
2540e2548.
(c) C. Biot, L. Delhaes, H. Abessolo, J. Organomet. Chem. 589 (1999)
59e65;
(d) C. Biot, Curr. Med. Chem.: Anti-Infect. Agents 3 (2004) 135e147.
[10] L. Chen, Q. Wang, R. Huang, C. Mao, J. Shang, H. Song, Appl. Organo-
met. Chem. 19 (2005) 45e48.
[3] D.S. Sigman, Biochemistry 29 (1990) 9097e9105.
[4] For hydrolytic pathways see: (a) R. Tawa, D. Gao, M. Takami,
Y. Imakura, K.-H. Lee, H. Sakurai, Bioorg. Med. Chem. 6 (1998)
1003e1008;
[11] (a) T.J. Atkins, J.E. Richman, W.F. Oettle, Org. Synth. 58 (1978) 86e98;
(b) E. Kimura, S. Aoki, T. Koike, M. Shiro, J. Am. Chem. Soc. 119
(1997) 3068e3076;