Communication
Liu, X. Feng, Angew. Chem. Int. Ed. 2010, 49, 4290–4293; Angew. Chem.
2010, 122, 4386–4389.
[3] J. Ma, X. Ding, Y. Hu, Y. Huang, L. Gong, E. Meggers, Nat. Commun. 2014,
5, 4531.
[4] Y. Hu, Z. Zhou, L. Gong, E. Meggers, Org. Chem. Front. 2015, 2, 968–972.
[5] X. Ding, H. Lin, L. Gong, E. Meggers, Asian J. Org. Chem. 2015, 4, 434–
437.
Changjiang Scholars and Innovative Research Team (PCSIRT) of
P. R. China, the National Thousand Talents Program of P. R.
China, and the Xiamen University (985 Program of the Chemis-
try and Chemical Engineering disciplines).
[6] For related metal-templated catalysts from our group, see: a) L.-A. Chen,
W. Xu, B. Huang, J. Ma, L. Wang, J. Xi, K. Harms, L. Gong, E. Meggers, J.
Am. Chem. Soc. 2013, 135, 10598–10601; b) L.-A. Chen, X. Tang, J. Xi, W.
Xu, L. Gong, E. Meggers, Angew. Chem. Int. Ed. 2013, 52, 14021–14025;
Angew. Chem. 2013, 125, 14271–14275; c) H. Huo, C. Fu, C. Wang, K.
Harms, E. Meggers, Chem. Commun. 2014, 50, 10409–10411; d) J. Liu, L.
Gong, E. Meggers, Tetrahedron Lett. 2015, 56, 4653–4656.
[7] For a recent review on metal-templated asymmetric catalysis by using
octahedral metal complexes, see: L. Gong, L.-A. Chen, E. Meggers, Angew.
Chem. Int. Ed. 2014, 53, 10868–10874; Angew. Chem. 2014, 126, 11046–
11053.
Keywords: Michael addition · Brønsted bases · Chirality ·
Iridium · Sulfur
[1] For comprehensive reviews on asymmetric sulfa-Michael addition, see:
a) P. Chauhan, S. Mahajan, D. Enders, Chem. Rev. 2014, 114, 8807–8864;
b) D. Enders, K. Lüttgen, A. Narine, Synthesis 2007, 959–980.
[2] For recent examples of asymmetric sulfa-Michael additions, see: a) A. C.
Breman, S. E. M. Telderman, R. P. M. van Santen, J. I. Scott, J. H. van Maar-
seveen, S. Ingemann, H. Hiemstra, J. Org. Chem. 2015, 80, 10561–10574;
b) R. Wang, J. Liu, J. Xu, Adv. Synth. Catal. 2015, 357, 159–167; c) Y.-F.
Wang, S. Wu, P. G. Karmaker, M. Sohail, Q. Wang, F.-X. Chen, Synthesis
2015, 47, 1147–1153; d) J. Chen, S. Meng, L. Wang, H. Tang, Y. Huang,
Chem. Sci. 2015, 6, 4184–4189; e) S. Shaw, J. D. White, Org. Lett. 2015,
17, 4564–4567; f) N. Fu, L. Zhang, S. Luo, J.-P. Cheng, Org. Lett. 2014, 16,
4626–4629; g) Y.-H. Li, B.-L. Zhao, Y. Gao, D.-M. Du, Tetrahedron: Asymme-
try 2014, 25, 1513–1519; h) B.-L. Zhao, L. Liu, D.-M. Du, Eur. J. Org. Chem.
2014, 7850–7858; i) J. D. White, S. Shaw, Chem. Sci. 2014, 5, 2200–2204;
j) X. Fang, X.-Q. Dong, Y.-Y. Liu, C.-J. Wang, Tetrahedron Lett. 2013, 54,
4509–4511; k) S. Diosdado, J. Etxabe, J. Izquierdo, A. Landa, A. Mielgo, I.
Olaizola, R. López, C. Palomo, Angew. Chem. Int. Ed. 2013, 52, 11846–
11851; Angew. Chem. 2013, 125, 12062–12067; l) L. Yao, K. Liu, H.-Y. Tao,
G.-F. Qiu, X. Zhou, C.-J. Wang, Chem. Commun. 2013, 49, 6078–6080; m)
X. Fang, J. Li, C.-J. Wang, Org. Lett. 2013, 15, 3448–3451; n) W. Yang, Y.
Yang, D.-M. Du, Org. Lett. 2013, 15, 1190–1193; o) X.-Q. Dong, X. Fang,
H.-Y. Tao, X. Zhou, C.-J. Wang, Adv. Synth. Catal. 2012, 354, 1141–1147;
p) X.-Q. Dong, X. Fang, H.-Y. Tao, X. Zhou, C.-J. Wang, Chem. Commun.
2012, 48, 7238–7240; q) Z.-C. Geng, N. Li, J. Chen, X.-F. Huang, B. Wu, G.-
G. Liu, X.-W. Wang, Chem. Commun. 2012, 48, 4713–4715; r) T. Ogawa,
N. Kumagai, M. Shibasaki, Angew. Chem. Int. Ed. 2012, 51, 8551–8554;
Angew. Chem. 2012, 124, 8679–8682; s) D. Uraguchi, N. Kinoshita, D. Na-
kashima, T. Ooi, Chem. Sci. 2012, 3, 3161–3164; t) L. Dai, H. Yang, F. Chen,
Eur. J. Org. Chem. 2011, 5071–5076; u) X.-Q. Dong, X. Fang, C.-J. Wang,
Org. Lett. 2011, 13, 4426–4429; v) X. Tian, C. Cassani, Y. Liu, A. Moran, A.
Urakawa, P. Galzerano, E. Arceo, P. Melchiorre, J. Am. Chem. Soc. 2011,
133, 17934–17941; w) M. Ueno, T. Kitanosono, M. Sakai, S. Kobayashi,
Org. Biomol. Chem. 2011, 9, 3619–3621; x) F. Zhao, W. Zhang, Y. Yang, Y.
Pan, W. Chen, H. Liu, L. Yan, C.-H. Tan, Z. Jiang, Adv. Synth. Catal. 2011,
353, 2624–2630; y) C. Yu, Y. Zhang, A. Song, Y. Ji, W. Wang, Chem. Eur. J.
2011, 17, 770–774; z) Y. Hui, J. Jiang, W. Wang, W. Chen, Y. Cai, L. Lin, X.
[8] For different aspects of metal-centered chirality, see: a) U. Knof, A.
von Zelewsky, Angew. Chem. Int. Ed. 1999, 38, 302–322; Angew. Chem.
1999, 111, 312–333; b) H. Brunner, Angew. Chem. Int. Ed. 1999, 38, 1194–
1208; Angew. Chem. 1999, 111, 1248–1263; c) P. D. Knight, P. Scott, Coord.
Chem. Rev. 2003, 242, 125–143; d) M. Fontecave, O. Hamelin, S. Ménage,
Top. Organomet. Chem. 2005, 15, 271–288; e) H. Amouri, M. Gruselle,
Chirality in Transition Metal Chemistry, Wiley, Chichester, UK, 2008; f) J.
Crassous, Chem. Soc. Rev. 2009, 38, 830–845; g) E. Meggers, Eur. J. Inorg.
Chem. 2011, 2911–2926; h) J. Crassous, Chem. Commun. 2012, 48, 9684–
9692; i) E. C. Constable, Chem. Soc. Rev. 2013, 42, 1637–1651; j) Z.-Z. Li,
S.-Y. Yao, J.-J. Wu, B.-H. Ye, Chem. Commun. 2014, 50, 5644–5647; k) Z.-Z.
Li, S.-Y. Yao, B.-H. Ye, ChemPlusChem 2015, 80, 141–150; l) Z.-Z. Li, A.-H.
Wen, S.-Y. Yao, B.-H. Ye, Inorg. Chem. 2015, 54, 2726–2733.
[9] F. G. Bordwell, D. L. Hughes, J. Org. Chem. 1982, 47, 3224–3232.
[10] The basicity of pyridine is enhanced by 5.4 pKa units by introduction of
an electron-donating dimethylamino group into the para position
(DMAP). See, for example: I. Kaljurand, A. Kutt, L. Soovali, T. Rodima, V.
Maemets, I. Leito, I. A. Koppel, J. Org. Chem. 2005, 70, 1019–1028.
[11] For our synthetic method to synthesize nonracemic iridium(III) com-
plexes with two cyclometalated ligands, see: a) M. Helms, Z. Lin, L. Gong,
K. Harms, E. Meggers, Eur. J. Inorg. Chem. 2013, 4164–4172; for a related
strategy, see also: b) L. Gong, M. Wenzel, E. Meggers, Acc. Chem. Res.
2013, 46, 2635–2644; c) E. Meggers, Chem. Eur. J. 2010, 16, 752–758.
[12] a) D. Uraguchi, K. Yamada, T. Ooi, Angew. Chem. Int. Ed. 2015, 54, 9954–
9957; Angew. Chem. 2015, 127, 10092–10095; b) Q. Yao, Z. Wang, Y.
Zhang, X. Liu, L. Lin, X. Feng, J. Org. Chem. 2015, 80, 5704–5712.
[13] M. Marigo, T. Schulte, J. Franzén, K. A. Jørgensen, J. Am. Chem. Soc. 2005,
127, 15710–15711.
Received: November 27, 2015
Published Online: January 22, 2016
Eur. J. Org. Chem. 2016, 887–890
890
© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim