ACS Medicinal Chemistry Letters
Note
(11) Dowling, D. P.; Gantt, S. L.; Gattis, S. G.; Fierke, C. A.;
Christianson, D. W. Structural studies of human histone deacetylase 8
and its site-specific variants complexed with substrates and inhibitors.
Biochemistry 2008, 47, 13554−13563.
(31) Kerr, J. S.; Galloway, S.; Lagrutta, A.; Armstrong, M.; Miller, T.;
Richon, V. M.; Andrews, P. A. Nonclinical safety assessment of the
histone deacetylase inhibitor vorinostat. Int. J. Toxicol. 2010, 29, 3−
19.
(32) Kozikowski, A. P.; Chen, Y.; Gaysin, A.; Chen, B.; D’Annibale,
M. A.; Suto, C. M.; Langley, B. C. Functional differences in epigenetic
modulators − superiority of mercaptoacetamide-based histone
deacetylase inhibitors relative to hydroxamates in cortical neuron
neuroprotection studies. J. Med. Chem. 2007, 50, 3054−3061.
(33) Segretti, M. C. F.; Vallerini, G. P.; Brochier, C.; Langley, B.;
Wang, L.; Hancock, W. W.; Kozikowski, A. P. Thiol-based potent and
selective HDAC6 inhibitors promote tubulin acetylation and T-
regulatory cell suppressive function. ACS Med. Chem. Lett. 2015, 6,
1156−1161.
(34) Lv, W.; Zhang, G.; Barinka, C.; Eubanks, J. H.; Kozikowski, A.
P. Design and synthesis of mercaptoacetamides as potent, selective,
and brain permeable histone deacetylase 6 inhibitors. ACS Med. Chem.
Lett. 2017, 8, 510−515.
(35) Chakrabarti, P. Geometry of interaction of metal ions with
sulfur-containing ligands in protein structures. Biochemistry 1989, 28,
6081−6085.
(12) Gantt, S. L.; Joseph, C. G.; Fierke, C. A. Activation and
inhibition of histone deacetylase 8 by monovalent cations. J. Biol.
Chem. 2010, 285, 6036−6043.
(13) Gantt, S. M.; Decroos, C.; Lee, M. S.; Gullett, L. E.; Bowman,
C. M.; Christianson, D. W.; Fierke, C. A. General base-general acid
catalysis in human histone deacetylase 8. Biochemistry 2016, 55, 820−
832.
(14) Ellmeier, W.; Seiser, C. Histone deacetylase function in CD4+
T cells. Nat. Rev. Immunol. 2018, 18, 617−634.
(15) Falkenberg, K. J.; Johnstone, R. W. Histone deacetylases and
their inhibitors in cancer, neurological diseases and immune disorders.
Nat. Rev. Drug Discovery 2014, 13, 673−691.
(16) Hubbert, C.; Guardiola, A.; Shao, R.; Kawaguchi, Y.; Ito, A.;
Nixon, A.; Yoshida, M.; Wang, X. F.; Yao, T. P. HDAC6 is a
microtubule-associated deacetylase. Nature 2002, 417, 455−458.
(17) Haggarty, S. J.; Koeller, K. M.; Wong, J. C.; Grozinger, C. M.;
Schreiber, S. L. Domain-selective small-molecule inhibitor of histone
deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc. Natl.
Acad. Sci. U. S. A. 2003, 100, 4389−4394.
(36) Cole, K. E.; Dowling, D. P.; Boone, M. A.; Phillips, A. J.;
Christianson, D. W. Structural basis of the antiproliferative activity of
largazole, a depsipeptide inhibitor of the histone deacetylases. J. Am.
Chem. Soc. 2011, 133, 12474−12477.
(18) Zhang, Y.; Li, N.; Caron, C.; Matthias, G.; Hess, D.; Khochbin,
S.; Matthias, P. HDAC-6 interacts with and deacetylates tubulin and
microtubules in vivo. EMBO J. 2003, 22, 1168−1179.
(19) Yang, P. H.; Zhang, L.; Zhang, Y. J.; Zhang, J.; Xu, W. F.
HDAC6: physiological function and its selective inhibitors for cancer
treatment. Drug Discoveries Ther. 2013, 7, 233−242.
(37) Stolfa, D. A.; Marek, M.; Lancelot, J.; Hauser, A.-T.; Walter, A.;
Leproult, E.; Melesina, J.; Rumpf, T.; Wurtz, J.-M.; Cavarelli, J.; Sippl,
W.; Pierce, R. J.; Romier, C.; Jung, M. Molecular basis for the
antiparasitic activity of a mercaptoacetamide derivative that inhibits
histone deacetylase 8 (HDAC8) from the human pathogen
Schistosoma mansoni. J. Mol. Biol. 2014, 426, 3442−3453.
(38) Somoza, J. R.; Skene, R. J.; Katz, B. A.; Mol, C.; Ho, J. D.;
Jennings, A. J.; Luong, C.; Arvai, A.; Buggy, J. J.; Chi, E.; Tang, J.;
Sang, B.-C.; Verner, E.; Wynands, R.; Leahy, E. M.; Dougan, D. R.;
Snell, G.; Navre, M.; Knuth, M. A.; Swanson, R. V.; McRee, D. E.;
Tari, L. W. Structural snapshots of human HDAC8 provide insights
into the class I histone deacetylases. Structure 2004, 12, 1325−1334.
(39) Vannini, A.; Volpari, C.; Filocamo, G.; Casavola, E. C.;
Brunetti, M.; Renzoni, D.; Chakravarty, P.; Paolini, C.; De Francesco,
(20) Rivieccio, M. A.; Brochier, C.; Willis, D. E.; Walker, B. A.;
D’Annibale, M. A.; McLaughlin, K.; Siddiq, A.; Kozikowski, A. P.;
Jaffrey, S. R.; Twiss, J. L.; Ratan, R. R.; Langley, B. HDAC6 is a target
for protection and regeneration following injury in the nervous
system. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 19599−19604.
(21) Simoes-Pires, C.; Zwick, V.; Nurisso, A.; Schenker, E.; Carrupt,
̃
P. A.; Cuendet, M. HDAC6 as a target for neurodegenerative diseases:
what makes it different from the other HDACs? Mol. Neurodegener.
2013, 8, 7.
(22) Butler, K. V.; Kalin, J.; Brochier, C.; Vistoli, G.; Langley, B.;
Kozikowski, A. P. Rational design and simple chemistry yield a
superior, neuroprotective HDAC6 inhibitor, Tubastatin A. J. Am.
Chem. Soc. 2010, 132, 10842−10846.
(23) Hai, Y.; Christianson, D. W. Histone deacetylase 6 structure
and molecular basis of catalysis and inhibition. Nat. Chem. Biol. 2016,
12, 741−747.
(24) Miyake, Y.; Keusch, J. J.; Wang, L.; Saito, M.; Hess, D.; Wang,
X.; Melancon, B. J.; Helquist, P.; Gut, H.; Matthias, P. Structural
insights into HDAC6 tubulin deacetylation and its selective inhibition.
Nat. Chem. Biol. 2016, 12, 748−754.
(25) Porter, N. J.; Mahendran, A.; Breslow, R.; Christianson, D. W.
Unusual zinc binding mode of HDAC6-selective hydroxamate
inhibitors. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13459−13464.
(26) Porter, N. J.; Wagner, F. F.; Christianson, D. W. Entropy as a
driver of selectivity for inhibitor binding to histone deacetylase 6.
Biochemistry 2018, 57, 3916−3924.
R.; Gallinari, P.; Steinkuhler, C.; Di Marco, S. Crystal structure of a
̈
eukaryotic zinc-dependent histone deacetylase, human HDAC8,
complexed with a hydroxamic acid inhibitor. Proc. Natl. Acad. Sci.
U. S. A. 2004, 101, 15064−15069.
(40) Bertos, N. R.; Gilquin, B.; Chen, G. K. T.; Yen, T. J.; Khochbin,
S.; Yang, X.-J. Role of the tetradecapeptide repeat domain of human
histone deacetylase 6 in cytoplasmic retention. J. Biol. Chem. 2004, 12,
48246−48254.
(41) Ondetti, M. A.; Rubin, B.; Cushman, D. W. Design of specific
inhibitors of angiotensin-converting enzyme: new class of orally active
antihypertensive agents. Science 1977, 196, 441−444.
(42) Cushman, D. W.; Ondetti, M. A. History of the design of
Captopril and related inhibitors of angiotensin converting enzyme.
Hypertension 2001, 17, 589−592.
(43) Lee, J.-H.; Yao, Y.; Mahendran, A.; Ngo, L.; Venta-Perez, G.;
Choy, M. L.; Breslow, R.; Marks, P. A. Creation of a histone
deacetylase 6 inhibitor and its biological effects. Proc. Natl. Acad. Sci.
U. S. A. 2015, 112, 12005−12010; 2015, 112, E5899.
(27) Porter, N. J.; Osko, J. D.; Diedrich, D.; Kurz, T.; Hooker, J. M.;
Hansen, F. K.; Christianson, D. W. Histone deacetylase 6-selective
inhibitors and the influence of capping groups on hydroxamate-zinc
denticity. J. Med. Chem. 2018, 61, 8054−8060.
(28) Richon, V. M.; Webb, Y.; Merger, R.; Sheppard, T.; Jursic, B.;
Ngo, L.; Civoli, F.; Breslow, R.; Rifkind, R. A.; Marks, P. A. Second
generation hybrid polar compounds are potent inducers of trans-
formed cell differentiation. Proc. Natl. Acad. Sci. U. S. A. 1996, 93,
5705−5708.
(29) Marks, P. A. Discovery and development of SAHA as an
anticancer agent. Oncogene 2007, 26, 1351−1356.
(30) Shen, S.; Kozikowski, A. P. Why hydroxamates may not be the
best histone deacetylase inhibitors − what some may have forgotten
or would rather forget? ChemMedChem 2016, 11, 15−21.
E
ACS Med. Chem. Lett. XXXX, XXX, XXX−XXX