ACCEPTED MANUSCRIPT
Newton, S.M. Friedman, P.A. Scherle, K. Vaddi, Selective inhibition of ADAM metalloproteases as a
novel approach for modulating ErbB pathways in cancer, Clin. Cancer Res. 13 (2007) 1892-1902.
[11] a) R.C. Andrews, M.W. Andersen, D.J. Cowan, D.N. Deaton, S.H. Dickerson, D.H. Drewry, M.D.
Gaul, M.J. Luzzio, M.H. Rabinowitz, Formamides as therapeutic agents, US Pat. Appl. US 6172064,
2001. b) C. Hundhausen, D. Misztela, T.A. Berkhout, N. Broadway, P. Saftig, K. Reiss, D. Hartmann,
F. Fahrenholz, R. Postina, V. Matthews, K.J. Kallen, S. Rose-John, A. Ludwig, The disintegrin-like
metalloproteinase ADAM10 is involved in constitutive cleavage of CX3CL1 (fractalkine) and regulates
CX3CL1-mediated cell-cell adhesion, Blood 102 (2003) 1186-1195. c) A. Ludwig, C. Hundhausen,
M.H. Lambert, N. Broadway, R.C. Andrews, D.M. Bickett, M.A. Leesnitzer, J.D. Becherer,
Metalloproteinase inhibitors for the disintegrin-likemetalloproteinases ADAM10 and ADAM17 that
differentially block constitutive and phorbol esterinducible shedding of cell surface molecules, Comb.
Chem. High Throughput Screen. 8 (2005) 161–171.
[12] E. Nuti, F. Casalini, S. Santamaria, M. Fabbi, G. Carbotti, S. Ferrini, L. Marinelli, V. La Pietra, E.
Novellino, C. Camodeca, E. Orlandini, S. Nencetti, A. Rossello, Selective Arylsulfonamide Inhibitors of
ADAM-17: Hit Optimization and Activity in Ovarian Cancer Cell Models, J. Med. Chem. 56 (2013)
8089−8103.
[13] G. Carbotti, A.M. Orengo, D. Mezzanzanica, M. Bagnoli, A. Brizzolara, L. Emionite, A. Puppo,
M.G. Centurioni, M. Bruzzone, P. Marroni, A. Rossello, S. Canevari, S. Ferrini, M. Fabbi, Activated
leukocyte cell adhesion molecule soluble form: a potential biomarker of epithelial ovarian cancer is
increased in type II tumors, Int. J. Cancer, 132 (2013) 2597-2605.
[14] a) D.M. Burns, W. Yao, C. He, Hydroxamic acid derivatives as metalloprotease inhibitors, US Pat.
Appl. US 0250789, 2005. b) D.M. Burns, C. He, Y. Li, P. Scherle, X. Liu, C.A. Marando, M.B.
Covington, G. Yang, M. Pan, S. Turner, J.S. Fridman, G. Hollis, K. Vaddi, S. Yeleswaram, R. Newton, S.
Friedman, B. Metcalf, W. Yao, Conversion of an MMP-potent scaffold to an MMP-selective HER-2
sheddase inhibitor via scaffold hybridization and subtle P1' permutations, Bioorg. Med. Chem. Lett. 18
(2008) 560-564.
[15] A. Fiser, R.K. Do, A. Sali, Modeling of loops in protein structures, Protein Sci. 9 (2000) 1753-
1773.
[16] R.A. Laskowski, M.W. Macarthur, D.S. Moss, J.M. Thornton, Procheck - a Program to Check the
Stereochemical Quality of Protein Structures, J. Appl. Crystallogr. 26 (1993) 283-291.
[17] U. Neumann, H. Kubota, K. Frei, V. Ganu, D. Leppert, Characterization of Mca-Lys-Pro-Leu-Gly-
Leu-Dpa-Ala-Arg-NH2, a fluorogenic substrate with increased specificity constants for collagenases
and tumor necrosis factor converting enzyme, Anal. Biochem. 328 (2004) 166–173.
[18] D.P. Becker, T.E. Barta, L.J. Bedell, T.L. Boehm, B.R. Bond, J. Carroll, C.P. Carron, G.A.
Decrescenzo, A.M. Easton, J.N. Freskos, C.L. Funckes-Shippy, M. Heron, S. Hockerman, C.P. Howard,
J.R. Kiefer, M.H. Li, K.J. Mathis, J.J. McDonald, P.P. Mehta, G.E. Munie, T. Sunyer, C.A. Swearingen,
C.I. Villamil, D. Welsch, J.M. Williams, Y. Yu, J. Yao, Orally active MMP-1 sparing α-
tetrahydropyranyl and α-piperidinyl sulfone matrix metalloproteinase (MMP) inhibitors with efficacy in
cancer, arthritis, and cardiovascular disease, J. Med. Chem. 53 (2010) 6653-6680.
[19] S. Pahwa, M.J. Stawikowski, G.B. Fields, Monitoring and Inhibiting MT1-MMP during Cancer
Initiation and Progression, Cancers 6 (2014) 416-435.
[20] C. Antoni, L. Vera, L. Devel, M.P. Catalani, B. Czarny, E. Cassar-Lajeunesse, E. Nuti, A. Rossello,
V. Dive, E.A. Stura, Crystallization of bi-functional ligand protein complexes, J. Struct. Biol. 182 (2013)
246-254
.
[21] S. Nakayama, T. Yokote, M. Tsuji, T. Akioka, T. Miyoshi, Y. Hirata, N. Hiraoka, K. Iwaki, A.
Takayama, U. Nishiwaki, Y. Masuda, T. Hanafusa, Expression of tumour necrosis factor-α and its
receptors in Hodgkin lymphoma, Br. J. Haematol. 167 (2014) 574-577.
19