Ozaki et al.
Concise Report
Ed. 2018, 57, 6018–6041; (c) Wiebe, A.; Gieshoff, T.; Möhle, S.; Ro-
drigo, E.; Zirbes, M.; Waldvogel, S. R. Electrifying Organic Synthesis.
Angew. Chem., Int. Ed. 2018, 57, 5594–5619; (d) Waldvogel, S. R.;
Lips, S.; Selt, M.; Riehl, B.; Kampf, C. J. Electrochemical Arylation Re-
action. Chem. Rev. 2018, 118, 6706–6765; (e) Nutting, J. E.; Rafiee,
M.; Stahl, S. S. Tetramethylpiperidine N-Oxyl (TEMPO), Phthalimide
N-Oxyl (PINO), and Related N-Oxyl Species: Electrochemical Proper-
ties and Their Use in Electrocatalytic Reactions. Chem. Rev. 2018, 118,
4834–4885; (f) Yoshida, J.; Shimizu, A.; Hayashi, R. Electrogenerated
Cationic Reactive Intermediates: The Pool Method and Further Ad-
vances. Chem. Rev. 2018, 118, 4702–4730; (g) Jiang, Y.; Xu, K.; Zeng,
C. Use of Electrochemistry in the Synthesis of Heterocyclic Structures.
Chem. Rev. 2018, 118, 4485–4540; (h) Yan, M.; Kawamata, Y.; Baran,
P. S. Synthetic Organic Electrochemical Methods Since 2000: On the
Verge of a Renaissance. Chem. Rev. 2017, 117, 13230–13319.
Chem. 2014, 79, 919–926; (j) Moore, J. C.; Davies, E. S.; Walsh, D. A.;
Sharma, P.; Moses, J. E. Formal synthesis of kingianin A based upon a
novel electrochemically-induced radical cation Diels–Alder reaction.
Chem. Commun. 2014, 50, 12523–12525; (k) Tan, J. S. J.; Hirvonen, V.;
Paton, R. S. Dynamic Intermediates in the Radical Cation Diels−Alder
Cycloaddition: Lifetime and Suprafacial Stereoselectivity. Org. Lett.
2018, 20, 2821–2825.
[5] Reynolds, D. W.; Bauld, N. L. The diene component in the cation rad-
ical Diels-Alder. Tetrahedron 1986, 42, 6189–6194.
[6] Lin, S.; Ischay, M. A.; Fry, C. G.; Yoon, T. P. Radical Cation Diels-Alder
Cycloadditions by Visible Light Photocatalysis. J. Am. Chem. Soc. 2011,
133, 19350–19353.
[7] Stevenson, S. M.; Shores, M. P.; Ferreira, E. M. Photooxidizing Chro-
mium Catalysts for Promoting Radical Cation Cycloadditions. Angew.
Chem., Int. Ed. 2015, 54, 6506–6510.
[3] For recent reviews, see: (a) Silvi, M.; Melchiorre, P. Enhancing the
potential of enantioselective organocatalysis with light. Nature 2018,
554, 41–49; (b) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R.
W.; MacMillan, D. W. C. The merger of transition metal and photo-
catalysis. Nat. Rev. Chem. 2017, 1, 0052; (c) Romero, N. A.; Nicewicz,
D. A. Organic Photoredox Catalysis. Chem. Rev. 2016, 116, 10075–
10166; (d) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Dual Catalysis Strate-
[8] Shin, J. H.; Seong, E. Y.; Mun, H. J.; Jang, Y. J.; Kang, E. J. Electronically
Mismatched Cycloaddition Reactions via First-Row Transition Metal,
Iron(III)−Polypyridyl Complex. Org. Lett. 2018, 20, 5872–5876.
[9] Zhao, Y.; Antonietti, M. Visible-Light-Irradiated Graphitic Carbon Ni-
tride Photocatalyzed Diels–Alder Reactions with Dioxygen as Sus-
tainable Mediator for Photoinduced Electrons. Angew. Chem., Int. Ed.
2017, 56, 9336–9340.
gies in Photochemical Synthesis. Chem. Rev. 2016, 116, 10035–10074; [10] (a) Morse, P. D.; Nguyen, T. M.; Cruz, C. L.; David, A.; Nicewicz, D. A.
(e) Ravelli, D.; Protti, S.; Fagnoni, M. Carbon–Carbon Bond Forming
Reactions via Photogenerated Intermediates. Chem. Rev. 2016, 116,
9850–9913; (f) Poplata, S.; Tröster, A.; Zou, Y.-Q.; Bach, T. Recent
Advances in the Synthesis of Cyclobutanes by Olefin *2ꢀ+ꢀ2+ Photocy-
cloaddition Reactions. Chem. Rev. 2016, 116, 9748–9815; (g) r s,
M. D.; Porco, J. A., Jr.; Stephenson, C. R. J. Photochemical Approach-
es to Complex Chemotypes: Applications in Natural Product Synthe-
sis. Chem. Rev. 2016, 116, 9683–9747; (h) Prier, C. K.; Rankic, D. A.;
MacMillan, D. W. C. Visible Light Photoredox Catalysis with Transi-
tion Metal Complexes: Applications in Organic Synthesis. Chem. Rev.
2013, 113, 5322–5363; (i) Narayanam, J. M. R.; Stephenson, C. R. J.
Visible light photoredox catalysis: applications in organic synthesis.
Chem. Soc. Rev. 2011, 40, 102–113.
Enantioselective counter-anions in photoredox catalysis: The asym-
metric cation radical Diels-Alder reaction. Tetrahedron 2018, 74,
3266–3272; (b) Tanaka, K.; Kishimoto, M.; Sukekawa, M.; Hoshino, Y.;
Honda, K. Short communicationFull text access Green-light-driven
thioxanthylium-based organophotoredox catalysts: Organophotore-
dox promoted radical cation Diels-Alder reaction. Tetrahedron Lett.
2018, 59, 3361–3364.
[11] Lin, S.; Lies, S. D.; Gravatt, C. S.; Yoon, T. P. Radical Cation Cycloaddi-
tions Using Cleavable Redox Auxiliaries. Org. Lett. 2017, 19, 368–371.
[12] (a) Imada, Y.; Okada, Y.; Chiba, K. Investigating radical cation chain
processes in the electrocatalytic Diels–Alder reaction. Beilstein J. Org.
Chem. 2018, 14, 642–647; (b) Ozaki, A.; Yamaguchi, Y.; Okada, Y.;
Chiba, K. Bidirectional Access to Radical Cation Diels-Alder Reactions
by Electrocatalysis. ChemElectroChem 2017, 4, 1852–1855; (c) Okada,
Y.; Yamaguchi, Y.; Ozaki, A.; Chiba, K. Aromatic “Redox Tag”-Assisted
Diels-Alder Reactions by Electrocatalysis. Chem. Sci. 2016, 7, 6387–
6393.
[13] Imada, Y.; Yamaguchi, Y.; Shida, N.; Okada, Y.; Chiba, K. Entropic
electrolytes for anodic cycloadditions of unactivated alkene nucleo-
philes. Chem. Commun. 2017, 53, 3960–3963.
[14] (a) Okada, Y.; Chiba, K. Redox-Tag Processes: Intramolecular Electron
Transfer and Its Broad Relationship to Redox Reactions in General.
Chem. Rev. 2018, 118, 4592–4630; (b) Okada, Y.; Nishimoto, A.; Ak-
aba, R.; Chiba, K. Electron-Transfer-Induced Intermolecular [2 + 2]
Cycloaddition Reactions Based on the Aromatic “Redox Tag” Strategy.
J. Org. Chem. 2011, 76, 3470–3476.
[4] For selected examples, see: (a) Bellville, D. J.; Wirth, D. W.; Bauld, N.
L. The Cation-Radical Catalyzed Diels-Alder Reaction. J. Am. Chem.
Soc. 1981, 103, 718–720; (b) Bauld, N. L.; Bellville, D. J.; Harirchian, B.;
Lorenz, K. T.; Pabon, R. A., Jr.; Reynolds, D. W.; Wirth, D. D.; Chiou, H.
S.; Marsh, B. K. Cation Radical Pericyclic Reactions. Acc. Chem. Res.
1987, 20, 371–378; (c) Bauld, N. L. Cation radical cycloadditions and
related sigmatropic reactions. Tetrahedron 1989, 45, 5307–5363; (d)
Mlcoch, J.; Steckhan, E. Electrochemically induced [4+2]-cycloaddi-
tions - a mechanistic interpretation of the cation radical Diels-Alder
reaction based on preparative results. Tetrahedron Lett. 1987, 28,
1081–1084; (e) Gieseler, A.; Steckhan, E.; Wiest, O.; Knoch, F. Pho-
tochemically Induced Radical-Cation Diels-Alder Reaction of Indole
and Electron-Rich Dienes. J. Org. Chem. 1991, 56, 1405–1411; (f)
Haberl, U.; Wiest, O.; Steckhan, E. Ab Initio Studies of the Radical
Cation Diels−Alder Reaction. J. Am. Chem. Soc. 1999, 121, 6730–6736;
(g) Valley, N. A.; Wiest, O. Methyl Substituent Effects in Radical Cati-
on Diels−Alder Reactions. J. Org. Chem. 2007, 72, 559–566; (h) Pe-
rez-Ruiz, R.; Domingo, L. R.; Jimenez, M. C.; Miranda, M. A. Experi-
mental and Theoretical Studies on the Radical-Cation-Mediated
Imino-Diels–Alder Reaction. Org. Lett. 2011, 13, 5116–5119; (i) Lim,
H. N.; Parker, K. A. Intermolecular Radical Cation Diels–Alder (RCDA)
Reaction of Bicyclooctadienes: Biomimetic Formal Total Synthesis of
Kingianin A and Total Syntheses of Kingianins D, F, H, and J. J. Org.
[15] Shimizu, R.; Okada, Y.; Chiba, K. Stepwise radical cation Diels–Alder
reaction via multiple pathways. Beilstein J. Org. Chem. 2018, 14,
704–708.
Manuscript received: February 2, 2019
Manuscript revised: March 25, 2019
Manuscript accepted: March 28, 2019
Accepted manuscript online: XXXX, 2019
Version of record online: XXXX, 2019
564
© 2019 SIOC, CAS, Shanghai, & WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Chin. J. Chem. 2019, 37, 561-564