958
Vol. 55, No. 6
4) Kaminski J. J., Wallmark B., Briving C., Andersson B. M., J. Med.
Chem., 34, 533—541 (1991).
5) Sanfilippo P. J., Urbanski M., Press J. B., Dubinsky B., Moore J. B., J.
Med. Chem., 31, 2221—2227 (1988).
6) Almirante L., Polo L., Mugnaini A., Provinciali E., Rugarli P., Bian-
cotti A., Gamba A., Murmann W., J. Med. Chem., 8, 305—312 (1965).
7) Mosby W. L., “Heterocyclic Systems with Bridgehead Nitrogen
Atoms,” Wiley, New York, 1961, Part I, p. 460 and Part II, p. 802.
8) Blewitt H. L., “Special Topics in Heterocyclic Chemistry,” ed. by
Weissberger A., Taylor E. C., Wiley, New York, 1977, p. 117.
9) Spitzer W. A., Victor F., Pollock D. G., Hayers J. S., J. Med. Chem., 31,
1590—1595 (1988).
yields.
One of the advantages of solid acid catalysts is their ability
to perform as a recyclable reaction media. We were able to
separate cellulose sulfuric acid from the reaction medium
easily by washing with CH2Cl2. After drying it was reused
for subsequent reactions (Table 2, Entry 1). Thus, this
process could be also interesting for large-scale synthesis.
Conclusions
In summary, cellulose sulfuric acid as an efficient and en-
vironmentally friendly bio-supported proton source catalyst
was prepared and employed for the synthesis of imidazoazines
via the condensation of an aldehyde, a 2-aminoazine and an
isocyanide in the presence of cellulose sulfuric acid in excel-
lent yields with relatively short reaction times at room tem-
perature. To the best our knowledge this is the first report on
the synthesis of imidazoazines in a bio-supported catalyst
and these new reaction conditions would be a superior proton
source comparing to reported inorganic supported solid acids
and acidic resins.
10) Elhakmaoui A., Gueiffier A., Milhavet J.-C., Blache Y., Chapat J.-P.,
Chavignon O., Teulade J.-C., Snoeck R., Andrei G., De Clercq E.,
Bioorg. Med. Chem. Lett., 4, 1937—1940 (1994).
11) Gueiffier A., Mavel S., Lhassani M., Elhakmaoui A., Snoeck R., An-
drei G., Chavignon O., Teulade J.-C., Witvrouw M., Balzarini J., De
Clercq E., Chapat J.-P., J. Med. Chem., 41, 5108—5112 (1998).
12) Groebke K., Weber L., Mehlin F., Synlett, 1998, 661—663 (1998).
13) Blackburn C., Tetrahedron Lett., 39, 5469—5472 (1998).
14) Mavel S., Renou J. L., Galtier C., Snoeck R., Andrei G., Balzarini J.,
De Clercq E., Gueiffier A., Arzneim.-Forsch., 51, 304—309 (2001).
15) Klemm D., Heublein B., Fink H. P., Bohn A., Angew. Chem. Int. Ed.,
44, 3358—3393 (2005).
16) Breslow R., Acc. Chem. Res., 13, 170—190 (1980).
17) Clark J. H., Macquarrie D. J., “Green Chemistry and Technology,”
Blackwell, Abingdon, 2002.
Acknowledgements We gratefully acknowledge financial support from
the Research Council of Shahid Beheshti University.
18) Wei W.-L., Zhu H.-Y., Zhao C.-L., Huang M.-Y., Jiang Y.-Y., React.
Funct. Polym., 59, 33—39 (2004).
References
19) Crecchio C., Ruggiero P., Pizzigallo M. D. R., Biotechnol. Bioengi-
neering, 48, 585—591 (1995).
1) Maruyama Y., Anami K., Katoh Y., Arzneim.-Forsch., 28, 2102—2111
(1978).
20) Gliemann H., Nickel U., Schneider S., J. Raman Spec., 29, 89—96
(1998).
21) Huang K., Xue L., Hu Y.-C., Huang M.-Y., Jiang Y.-Y., React. Funct.
Polym., 50, 199—203 (2002).
2) Maruyama Y., Anami K., Terasawa M., Goto K., Imayoshi T., Kadobe
Y., Mizushima Y., Arzneim.-Forsch., 31, 1111—1118 (1981).
3) Rival Y., Grassy G., Michel G., Chem. Pharm. Bull., 40, 1170—1176
(1992).
22) Guibal E., Prog. Polym. Sci., 30, 71—109 (2005).
23) Shaabani A., Yavari I., Teimouri M. B., Bazgir A., Bijanzadeh H. R.,
Tetrahedron, 57, 1375—1378 (2001).
24) Shaabani A., Teimouri M. B., Bijanzadeh H. R., Tetrahedron Lett., 43,
9151—9154 (2002).
25) Shaabani A., Teimouri M. B., Arab-Ameri S., Tetrahedron Lett., 45,
8409—8413 (2004).
26) Shaabani A., Soleimani E., Khavasi H. R., Hoffmann R. D., Rodewald
U. C., Pöttgen R., Tetrahedron Lett., 47, 5493—5496 (2006).
27) Shaabani A., Soleimani E., Maleki A., Tetrahedron Lett., 47, 3031—
3034 (2006).
28) Shaabani A., Bazgir A., Teimouri F., Lee D. G., Tetrahedron Lett., 43,
5165—5167 (2002).
29) Shaabani A., Teimouri F., Lee D. G., Synth. Commun., 33, 1057—1065
(2003).
30) Shaabani A., Lee D. G., Synth. Commun., 33, 1255—1260 (2003).
31) Shaabani A., Rahmati A., J. Mol. Catal. A-Chem., 249, 246—248
(2006).
Table 1. Effect of Catalyst for the Synthesis of 4a in CH3OH at Room
Temperature
Entry
Catalyst
—
Amberlyst-21
Montmorillonite-K10
AlCl3
Time (h)
Yield (%)a)
1b)
2
3
3
24
12
6
Trace
72
57
4
68
5
6
7
8
CH3COOH
HCl
H2SO4
H2SO4/SiO2
Cellulose sulfuric acid
5
36
30
10
55
24
24
3
9
3
98
a) Isolated yield. b) In the absence of the catalyst.
Table 2. Synthesis of Imidazoazines 4a—j in the Presence of Cellulose Sulfuric Acid
Entry
R1
R2
R3
Product
Yield (%)
1
2
3
4
5
6
7
8
9
Ph
Ph
Br
Me
Me
Me
Me
Me
H
Me
Me
Br
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
Cyclohexyl
tert-Butyl
4a
4b
4c
4d
4e
4f
4g
4h
4i
(98, 95, 92, 94, 85)a)
89
92
90
96
93
94
90
87
98
4-CH3C6H4
4-ClC6H4
3-O2NC6H4
4-Pyridyl
Ph
Ph
4-CH3C6H4
Ph
tert-Butyl
tert-Butyl
10
4j
a) The same catalyst was used for each of the five runs.