10−3 mol dm−3 in the chloroform phase. Details of the experimen-
tal arrangement and conditions employed have been described
in more detail elsewhere.6 The aqueous source phase contained
an equimolar mixture of cobalt(II), nickel(II), copper(II), zinc(II),
cadmium(II), silver(I) and lead(II) nitrate (each at 10−2 mol dm−3).
The source and receiving phases were buffered at pH 4.9 and
3.0, respectively, and the metal concentration in the aqueous
receiving phase was determined on termination of each experi-
ment after 24 h. Under the conditions employed, clear transport
selectivity for silver(I) occurred. Namely, silver was transported
at a rate (J) of 178 × 10−7 mol per 24 h while no transport of any
of the other six metals present in the source phase was observed
within the detection limits of the experiments.¶
positions and refined using a riding model. The refinement residuals
are defined as R1 = RꢀFo| − |Fcꢀ/R|Fo| for Fo > 2r(Fo) and wR2 =
2
1/2
{R[w(Fo − Fc2)2]/R[w(Fc2)2]} where w = 1/[r2(Fo2) + (0.0362P)2 +
2.2743P], P = (Fo + 2Fc2)/3. Crystal data: [Ag3(1)2(NO3)2]NO3;
2
Formula C48H42Ag3N9O9S6, M = 1404.88, monoclinic, space group
˚
˚
˚
P21/n (#14), ◦a = 14.4759(14) A, b = 16.4153(16) A, c = 22.157(2) A,
b = 90.879(2) , V = 5264.5(9) A , Dc = 1.773 g cm−3, Z = 4, crystal size
3
˚
0.28 × 0.23 × 0.17 mm, colourless, habit columnar, temperature 150(2)
K, k(Mo-Ka) = 0.71073, l(Mo-Ka) 1.407 mm−1, T(Empirical)min,max
=
0.713, 0.787, 2hmax = 56.62, hkl range −18 to 18, −20 to 21, −29 to
28, N = 51185, Nind = 12583 (Rmerge = 0.0461), Nobs = 9153 (I >
2r(I)), Nvar = 676, residuals R1(F, 2r) = 0.0364, wR2(F2, all) = 0.0822,
GoF(all) = 1.011, Dqmin,max = −0.516, 1.024 e A−3. CCDC reference
˚
number 265029. See http://www.rsc.org/suppdata/dt/b5/b505365j/
for crystallographic data in CIF or other electronic format.
¶ A J value of 20 × 10−7 mol per 24 h corresponds to the detection limit
for the transport runs and any apparently smaller values were treated as
zero.
In conclusion, the interaction of silver(I) with the tripodal
ligand 1 provides a facile means of generating a new trinuclear
metallo-capsule. While the latter adopts a symmetrical structure
in solution, a less symmetrical arrangement incorporating a AgI–
AgI interaction between two of its three silver centres, is obtained
in the crystalline state.
1 L. F. Lindoy and I. M. Atkinson, Self-Assembly in Supramolecular
Systems, ed. J. F. Stoddart, Royal Society of Chemistry, Cambridge,
UK, 2000; M. Ruben, J. Rojo, F. J. Romero-Salguero, L. H. Uppadine
and J.-M. Lehn, Angew. Chem., Int. Ed., 2004, 43, 3644; J.-P. Collin, C.
Dietrich-Buchecker, C. Hamann, D. Jouvenot, J.-M. Kern, P. Mobian
and J.-P. Sauvage, Comprehensive Coordination Chemistry II, 2004,
7, 303.
2 W.-Y. Sun, J. Fan, T.-A. Okamura, J. Xie, K.-B. Yu and N. Ueyama,
Chem. Eur. J., 2001, 7, 2557.
3 D. A. McMorran and P. J. Steel, Tetrahedron, 2003, 59, 3701.
4 A. Bondi, J. Phys. Chem., 1964, 68, 441; M. Jansen, Angew. Chem.,
Int. Ed. Engl., 1987, 26, 1098.
5 See, for example: C. X. Cui and M. Kertesz, Inorg. Chem., 1990, 29,
2568; R. Abidi, F. Arnaud-Neu, M. G. B. Drew, S. Lahely, D. Marrs, J.
Nelson and M.-J. Schwing-Weill, J. Chem. Soc., Perkin Trans. 2, 1996,
2742; P. Pyykko¨, Chem. Rev., 1997, 97, 597; V. McKee, J. Nelson, D. J.
Speed and R. M. Town, J. Chem. Soc., Dalton Trans., 2001, 3641;
R.-F. Song, Y.-B. Xie, J.-R. Li and X.-H. Bu, Dalton Trans., 2003,
4742; O.-S. Jung, Y. J. Kim, Y.-A. Lee, S. W. Kang and S. N. Choi,
Cryst. Growth Des., 2004, 4, 23.
6 S.-S. Lee, I. Yoon, K. M. Park, J. H. Jung, L. F. Lindoy, A. Nezhadali
and G. Rounaghi, J. Chem. Soc., Dalton Trans., 2002, 2180.
7 A. N. Khlobystov, A. J. Blake, N. R. Champness, D. A. Lemenovskii,
A. G Majouga, N. V. Zyk and M. Schro¨der, Coord. Chem. Rev., 2001,
222, 155.
8 L. Pan, E. B. Woodlock, X. Wang, K.-C. Lam and A. L. Rheingold,
Chem. Commun., 2001, 1762.
9 E. Diez-Barra, J. Garcia-Martinez, S. Merino, R. del Rey, J.
Rodriguez-Lopez, P. Sanchez-Verdu and J. Tejeda, J. Org. Chem.,
2001, 66, 5664.
10 Bruker. SMART, SAINT and XPREP: Area detector control and
data integration and reduction software. Bruker Analytical X-Ray
Instruments Inc. Madison, Wisconsin, USA, 1995.
11 L. J. Farrugia, J. Appl. Crystollogr., 1999, 32, 837.
12 P. Coppens, L. Leiserowitz and D. Rabinovich, Acta Crystallogr.,
1965, 18, 1035.
13 G. M. Sheldrick, SADABS: Empirical absorption and correction
software, University of Go¨ttingen, Institut fu¨r Anorganische Chemie
der Universita¨t, Tammanstrasse 4, D-3400 Go¨ttingen, Germany,
1999.
14 A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C.
Giocavazzo, A. Guagliardi, A. G. C. Moliterni, G. Polidori and S.
Spagna, J. Appl. Crystallogr., 1999, 32, 115.
15 G. M. Sheldrick, SHELX-97: Programs for crystal structure anal-
ysis, University of Go¨ttingen, Institut fr Anorganische Chemie
der Universita¨t, Tammanstrasse 4, D-3400 Go¨ttingen, Germany,
1998.
Acknowledgements
We thank Guizhou Normal University, the Deutsche
Forschungsgemeinschaft and the Australian Research Council
for financial support.
Notes and references
† Preparation of 1,3,5-tris((pyridin-4-ylthio)methyl)benzene (1).
A
suspension of 4-mercaptopyridine (15 mmol, 1.67 g), 1,3,5-
tris(bromomethyl)benzene9 (5 mmol, 1.78 g) and triethylamine
(20 mmol, 2.0 g) in acetonitrile (30 ml) was stirred at 0 ◦C for 18 h.
The resulting solid was filtered, washed with water, and recrystallised
1
from methanol/water resulting in a pale yellow solid (2.0 g, 90%). H
NMR (CDCl3, 200 MHz, 300 K), d: 4.17 (s, 6H, CH2), 7.07 (d, 6H, py),
7.33 (s, 3H, C6H3), 8.36 (d, 6H, py). 13C NMR (CDCl3, 75 MHz, 300 K),
35.77, 121.35, 128.78, 137.48, 149.02, 149.53. MS (ESI) m/z = 448.1
(M + H)+. Found: C, 64.15; H, 5.02; N, 9.08. C24H21N3S3 requires: C,
64.42; H, 4.73; N, 9.40%.
‡ Preparation of [Ag3L2(NO3)2]NO3 (L = 1). A solution of AgNO3
(0.09 g, 0.5 mmol) in 15 ml methanol/acetonitrile (2 : 1) was added to
a warm solution of 1,3,5-tris((pyridin-4-ylthio)methyl)benzene (0.22 g,
0.5 mmol) in MeOH (10 ml). This resulted in formation of the complex
(0.15 g, 65%) as a white precipitate. Found: C, 41.39; H, 3.04; N,
8.99. C48H42Ag3N9O9S6 requires: C, 41.11; H, 3.02; N, 9.00%. HRMS-
ESI (methanol) found 1342.8721. C48H42Ag3N8O6S6 requires 1342.8700,
[Ag3L2(NO3)2]+. 1H NMR (acetonitrile-d3, 200 MHz, 300 K), d: 4.29 (s,
6H, CH2), 7.19 (d, 6H, py), 7.46 (s, 3H, C6H3), 8.32 (d, 6H, py). This
product was recrystallised from acetonitrile to yield crystals suitable
for X-ray structure analysis. The complex is stable under ambient light
conditions for months, with no noticeable coloration of the bulk sample
when exposed to direct sunlight.
§ Full sphere data were collected at 150(2) K with x scans to approxi-
mately 56◦ 2h using a Bruker SMART 1000 diffractometer employing
graphite-monochromated Mo-Ka radiation generated from a sealed
˚
tube (0.71073 A). Data integration and reduction were undertaken with
SAINT and XPREP10 and subsequent computations were carried out
using the WinGX-3211 graphical user interface. Multi-scan empirical
absorption correction12 was applied to the data using the program
SADABS.13 The structure was solved by direct methods using SIR9714
then refined and extended with SHELXL-97.15 Non-hydrogen atoms
were refined anisotropically. Hydrogen atoms were included in idealised
D a l t o n T r a n s . , 2 0 0 5 , 2 0 8 2 – 2 0 8 3
2 0 8 3