ACS Medicinal Chemistry Letters
piperazine to improve physicochemical properties by
Page 4 of 5
(5) Makarov, V.; Lechartier, B.; Zhang, M.; Neres, J.; van der
Sar, A.M.; Raadsen, S.A.S.A.; Hartkoorn, R.C.; Ryabova,
O.B.; Vocat, A.; Decosterd, L.A.; Widmer, N.; Buclin, T.;
Bitter, W.; Andries, K.; Pojer, F.; Dyson, P.J.; Cole, S.T.,
Towards a new combination therapy for tuberculosis with
next generation benzothiazinones. EMBO Mol. Med. 2014, 6,
1
2
3
4
5
6
7
8
9
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
6
disruption of molecular planarity. Compound 5 containing the
azabicyclo[3.1.0]hexan-3-amine emerged as the most
promising analogue based on its improved solubility,
enhanced microsomal stability, and lower PPB compared to
PBTZ169. In addition, compound 5 had a respectable
pharmacokinetic profile with an oral bioavailability of 27%
and high volume of distribution.
3
72–383.
(
6) Brecik, M.; Centárová, I.; Mukherjee, R.; Kolly, G.S.;
Huszár, S.; Bobovská, A.; Kilacsková, E.; Mokošová, V.;
Svetlíková, Z.; Šarkan, M.; Neres, J.; Korduláková, J.; Cole,
ASSOCIATED CONTENT
Supporting Information
S.T.; Mikušová, K., DprE1 is a vulnerable tuberculosis drug
target due to its cell wall localization. ACS Chem. Biol. 2015,
10, 1631–1636.
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
1
2
3
4
5
6
7
8
9
0
The Supporting Information is available free of charge on the
ACS Publications website.
(7) Ishikawa, M.; Hashimoto, Y., Improvement in aqueous
solubility in small molecule drug discovery programs by
disruption of molecular planarity and symmetry. J. Med.
Chem. 2011, 54, 1539–1554.
Experimental procedure, biochemical methods, LC-MS/MS
1
13
method, and H and C NMR spectra (PDF)
AUTHOR INFORMATION
Corresponding Author
(8) Degorce, S.L.; Bodnarchuk, M.S.; Cumming, I.A.; Scott,
J.S., Lowering lipophilicity by Adding Carbon: One-Carbon
Bridges of Morpholines and Piperazines. J. Med. Chem.
2018, 61, 8934–8943.
*
(
9) Lv, K.; You, X.; Wang, B.; Wei, Z.; Chai, Y.; Wang, B.;
Wang, A.; Huang, G.; Liu, M.; Lu, Y., Identification of
better pharmacokinetic benzothiazinone derivatives as new
antitubercular agents. ACS Med. Chem. Lett., 2017, 8, 636–
641.
Author Contributions
The manuscript was written through contributions of all authors.
All authors have given approval to the final version of the
manuscript.
(10) Piton, J.; Vocat, A.; Lupien, A.; Foo, C.; Riabova, O.;
Makarov, V.; Cole, S.T., Structure-based drug design and
characterization of sulfonyl-piperazine benzothiazinone
inhibitors of DprE1 from Mycobacterium tuberculosis.
Antimicrob. Agents Chemother. 2018, 62, e00681-18.
Notes
The authors declare no competing financial interest.
ACKNOWLEDGMENT
(
11) Gao, C.; Ye, T.-H.; Wang, N.-Y.; Zeng, X.-X.; Zhang, L.-D.;
Xiong, Y.; You, X.-Y.; Xia, Y.; Xu, Y.; Peng, C.-T.; Zuo,
W.-Q.; Wei, Y.; Yu, L.-T., Synthesis and structure-activity
relationships evaluation of benzothiazinone derivatives as
potential anti-tubercular agents. Bioorg. Med. Chem. Lett.
This work was financially supported by a grant from the CAMS
Innovation Fund for Medical Sciences (CAMS-2017-I2M-1-011).
REFERENCES
(
1) WHO Global Tuberculosis Report 2018, 23ed; 2018.
2
013, 23, 4919–4922.
(2) Makarov, V.; Riabova, O.; Granik, V.; Yuschenko, A.;
Urlyapova, N.; Daudova, A.; Zipfel, P.; Möllmann, U.
(
(
12) Peng, C.T.; Gao, C.; Wang, N.Y.; You, X.Y.; Zhang, L.D.;
Zhu, Y.X.; Xv, Y.; Zuo, W.Q.; Ran, K.; Deng, H.X.; Lei, Q.;
Xiao, K.J.; Yu, L.T., Synthesis and antitubercular evaluation
of 4-carbonyl piperazine substituted 1,3-benzothiazin-4-one
derivatives. Bioorg. Med. Chem. Lett. 2015, 25, 1373–1376.
13) Li, P.; Wang, B.; Zhang, X.; Batt, S.M.; Besra, G.S.; Zhang,
T.; Ma, C.; Zhang, D.; Lin, Z.; Li, G.; Huang, H.; Lu, Y.,
Identification of novel benzothiopyranone compounds
against Mycobacterium tuberculosis through scaffold
morphing from benzothiazinones. Eur. J. Med. Chem. 2018,
Synthesis
dialkyldithiocarbamates. J. Antimicrob. Chemother. 2006,
7, 1134–1138.
and
antileprosy
activity
of
some
5
(
3) Makarov, V.; Manina, G.; Mikusova, K.; Mollmann, U.;
Ryabova, O.; Saint-Joanis, B.; Dhar, N.; Pasca, M.R.;
Buroni, S.; Lucarelli, A.P.; Milano, A.; De Rossi, E.;
Belanova, M.; Bobovska, A.; Dianiskova, P.; Kordulakova,
J.; Sala, C.; Fullam, E.; Schneider, P.; McKinney, J.D.;
Brodin, P.; Christophe, T.; Waddell, S.; Butcher, P.;
Albrethsen, J.; Rosenkrands, I.; Brosch, R.; Nandi, V.;
Bharath, S.; Gaonkar, S.; Shandil, R.K.; Balasubramanian,
V.; Balganesh, T.; Tyagi, S.; Grosset, J.; Riccardi, G.; Cole,
S.T., Benzothiazinones Kill Mycobacterium tuberculosis by
blocking arabinan synthesis. Science, 2009, 324, 801–804.
1
60, 157–170
(14) Lv, K.; Tao, Z.; Liu, Q.; Yang, L.; Wang, B.; Wu, S.; Wang,
A.; Huang, M.; Liu, M.; Lu, Y., Design, synthesis and
antitubercular evaluation of benzothiazinones containing a
piperidine moiety. Eur. J. Med. Chem. 2018, 151, 1–8.
(
15) Karoli, T.; Becker, B.; Zuegg, J.; Möllmann, U.; Ramu, S.;
Huang, J.X.; Cooper, M.A., Identification of antitubercular
benzothiazinone compounds by ligand-based design. J. Med.
Chem. 2012, 55, 7940–7944.
(4) (a) Trefzer, C.; Skovierová, H.; Buroni, S.; Bobovská, A.;
Nenci, S.; Molteni, E.; Pojer, F.; Pasca, M. R.; Makarov, V.;
Cole, S. T.; Riccardi, G.; Mikusová, K.; Johnsson, K.
Benzothiazinones are suicide inhibitors of mycobacterial
decaprenylphosphoryl-β-D-ribose 2ʹ-oxidase DprE1. J. Am.
Chem. Soc. 2012, 134, 912–915; (b) Neres, J.; Pojer, F.;
Molteni, E.; Chiarelli, L. R.; Dhar, N.; Boy-Röttger, S.;
Buroni, S.; Fullam, E.; Degiacomi, G.; Lucarelli, A. P.;
Read, R. J.; Zanoni, G.; Edmondson, D. E.; De Rossi, E.;
Pasca, M. R.; McKinney, J. D.; Dyson, P. J.; Riccardi, G.;
Mattevi, A.; Cole, S. T.; Binda, C. Structural basis for
benzothiazinone-mediated killing of Mycobacterium
tuberculosis. Science Trans. Med. 2012, 4, 150ra121.
(16) Xiong, L.; Gao, C.; Shi, Y.-J.; Tao, X.; Rong, J.; Liu, K.-L.;
Peng, C.-T.; Wang, N.-Y.; Lei, Q.; Zhang, Y.-W.; Yu, L.-T.;
Wei, Y.-Q., Identification of a new series of benzothiazinone
derivatives with excellent antitubercular activity and
improved pharmacokinetic profiles. RSC Advances, 2018, 8,
1
1163–11176.
(
17) Zhang, R.; Lv, K.; Wang, B.; Li, L.; Wang, B.; Liu, M.; Guo,
H.; Wang, A.; Lu, Y., Design, synthesis and antitubercular
evaluation of benzothiazinones containing an oximido or
ACS Paragon Plus Environment