Please do not adjust margins
ChemComm
Page 4 of 4
COMMUNICATION
Journal Name
generation of endogenous FA. Since excessive expression of cellular and the Open Project of State Key Laboratory of Pharmaceutical
DOI: 10.1039/D0CC00676A
LSD1 has been implicated in the abnormally elevated endogenous Biotechnology (KF-GN-202002).
FA, we further assessed whether FATP-1 can be used for monitoring
the fluctuations of the endogenous FA caused by the epigenetic
regulation of LSD1 activity in vivo. Live C. elegans that pre-incubated
with LSD1 inhibitors exhibit weaker TP fluorescence signals (Figure
Conflicts of interest
There are no conflicts to declare.
S10), indicating that down-regulation of LSD1 activities can efficiently
regulate the generation of endogenous FA in vivo. Taken together,
these observations confirm that FATP-1 can effectively monitor
fluctuations of endogenous FA under various external stimuli in vivo.
Notes and references
1. R. He, J. Lu and J. Miao, Sci China Life Sci, 2010, 53, 1399-1404.
2. Y. Shi, F. Lan, C. Matson, P. Mulligan, J. R. Whetstine, P. A. Cole, R. A. Casero
and Y. Shi, Cell, 2004, 119, 941-953.
Finally, we assessed FATP-1 as a TP imaging probe in the live animal
brain, especially in the epileptic brain. Wild-type mice were
performed direct intraperitoneal (i.p.) injection of KA (6 mg/Kg) to
establish the classical epilepsy animal model.30 Mice were then
injected (i.p.) with either DMSO or GSK-LSD1 for 12 h, followed by
intravenous (i.v.) injection of FATP-1 (0.5 mg/kg). The in vivo and ex
vivo fluorescence images of mice brains were obtained with an IVIS
imaging system every 15 min over a 60 min period (Figure 5A and B).
We observed a significant increase of fluorescence in KA-induced
epileptic brains, while co-treatment with GSK-LSD1 led to little
3. J. O'Sullivan, M. Unzeta, J. Healy, M. I. O'Sullivan, G. Davey and K. F. Tipton,
Neurotoxicology, 2004, 25, 303-315.
4. M. E. Andersen, H. J. Clewell, 3rd, E. Bermudez, D. E. Dodd, G. A. Willson, J. L.
Campbell and R. S. Thomas, Toxicol Sci, 2010, 118, 716-731.
5. Z. Tong, C. Han, W. Luo, X. Wang, H. Li, H. Luo, J. Zhou, J. Qi and R. He, Age
(Dordr), 2013, 35, 583-596.
6. Z. Tong, W. Luo, Y. Wang, F. Yang, Y. Han, H. Li, H. Luo, B. Duan, T. Xu, Q.
Maoying, H. Tan, J. Wang, H. Zhao, F. Liu and Y. Wan, PLoS One, 2010, 5, e10234.
7. M. Unzeta, M. Sole, M. Boada and M. Hernandez, J Neural Transm (Vienna),
2007, 114, 857-862.
8. J. Lu, J. Miao, T. Su, Y. Liu and R. He, Biochim Biophys Acta, 2013, 1830, 4102-
4116.
9. K. Tulpule and R. Dringen, J Neurochem, 2013, 127, 7-21.
difference in fluorescence signal compared to that of the wild-type 10. J. S. Hu, C. Shao, X. Wang, X. Di, X. Xue, Z. Su, J. Zhao, H. L. Zhu, H. K. Liu and Y.
Qian, Adv Sci (Weinh), 2019, 6, 1900341.
11. A. Roth, H. Li, C. Anorma and J. Chan, J Am Chem Soc, 2015, 137, 10890-10893.
12. Z. Li, Y. Xu, H. Zhu and Y. Qian, Chem Sci, 2017, 8, 5616-5621.
(WT) healthy mice. These data demonstrated the capability of FATP-
1 in BBB penetration and tracing the dynamic changes of FA levels in
the live epileptic brain. The frozen tissue sections from these mice
brains exhibited significantly increased fluorescence in the cerebral
cortex regions of KA-induced epileptic brains compared with the
negative control (Figure 3C-D and S11-12). In agreement with these
in vivo and ex vivo imaging results (Figure 3E and S13), the co-
treatment with GSK-LSD1 effectively decreased the fluorescence in
the epileptic brain tissues (Figure 3F). These observations indicate
that the pathological process of epilepsy is accompanied by an
abnormal elevation of FA level and neuronal damage in the brain
(Figure 3G), inhibition of abnormally elevated endogenous FA could
help to alleviate neuronal damage in the epileptic brain.
In conclusion, we have reported the first two-photon
fluorescence probe for imaging endogenous FA fluxes in live
cells, animals and brain tissues. The unique quinoline skeleton
in these probes led to excellent BBB permeability and two-
photon properties. Functionalization at the electron-donor
group with a four-membered azetidine group yields a new
generation of FA probes with improved brightness and
photostability. The use of the 2-aza-Cope FA reactive trigger has
ensured the selectivity of the probes towards FA, as well as their
cellular permeability. In vivo studies revealed a significant
increase in endogenous FA levels in live cells and C. elegans
under oxidative stress. Importantly, fluctuations of endogenous
FA in the epileptic mouse brains were successfully monitored by
TP fluorescence imaging, suggesting a correlation between the
abnormally elevated FA levels in the brain and the epilepsy
phenotype. This work provides a robust chemical tool for
probing endogenous FA in vivo and might be used in the further
to give crucial information for the prevention and treatment of
FA-related neurodegenerative disease.
13. M. Gao, F. Yu, C. Lv, J. Choo and L. Chen, Chem Soc Rev, 2017, 46, 2237-2271.
14. Z. Lou, P. Li and K. Han, Acc Chem Res, 2015, 48, 1358-1368.
15. J. Ning, W. Wang, G. B. Ge, P. Chu, F. D. Long, Y. L. Yang, Y. L. Peng, L. Feng, X.
C. Ma and T. D. James, Angew Chem Int Edit, 2019, 58, 13618-13618.
16. Q. Li, J. S. Lee, C. Ha, C. B. Park, G. Yang, W. B. Gan and Y. T. Chang, Angew
Chem Int Ed Engl, 2004, 43, 6331-6335.
17. M. Chioua, E. Martinez-Alonso, R. Gonzalo-Gobernado, M. I. Ayuso, A.
Escobar-Peso, L. Infantes, D. Hadjipavlou-Litina, J. J. Montoya, J. Montaner, A.
Alcazar and J. Marco-Contelles, J Med Chem, 2019, 62, 2184-2201.
18. Z. Mao, L. Hu, X. Dong, C. Zhong, B. F. Liu and Z. Liu, Anal Chem, 2014, 86,
6548-6554.
19. J. Ohata, K. J. Bruemmer and C. J. Chang, Acc Chem Res, 2019, 52, 2841-2848.
20. T. F. Brewer and C. J. Chang, J Am Chem Soc, 2015, 137, 10886-10889.
21. J. B. Grimm, B. P. English, J. Chen, J. P. Slaughter, Z. Zhang, A. Revyakin, R. Patel,
J. J. Macklin, D. Normanno, R. H. Singer, T. Lionnet and L. D. Lavis, Nat Methods,
2015, 12, 244-250, 243 p following 250.
22. J. B. Grimm, B. P. English, H. Choi, A. K. Muthusamy, B. P. Mehl, P. Dong, T. A.
Brown, J. Lippincott-Schwartz, Z. Liu, T. Lionnet and L. D. Lavis, Nat Methods, 2016,
13, 985-988.
23. D. W. Choi, Neuron, 1988, 1, 623-634.
24. L. Silayeva, T. Z. Deeb, R. M. Hines, M. R. Kelley, M. B. Munoz, H. H. Lee, N. J.
Brandon, J. Dunlop, J. Maguire, P. A. Davies and S. J. Moss, Proc Natl Acad Sci U S
A, 2015, 112, 3523-3528.
25. M. Levesque and M. Avoli, Neurosci Biobehav R, 2013, 37, 2887-2899.
26. A. V. Shindyapina, T. V. Komarova, E. V. Sheshukova, N. M. Ershova, V. N.
Tashlitsky, A. V. Kurkin, I. R. Yusupov, G. V. Mkrtchyan, M. Y. Shagidulin and Y. L.
Dorokhov, Front Neurosci, 2017, 11, 651.
27. G. Burgos-Barragan, N. Wit, J. Meiser, F. A. Dingler, M. Pietzke, L. Mulderrig,
L. B. Pontel, I. V. Rosado, T. F. Brewer, R. L. Cordell, P. S. Monks, C. J. Chang, A.
Vazquez and K. J. Patel, Nature, 2017, 548, 549-554.
28. K. J. Bruemmer, O. Green, T. A. Su, D. Shabat and C. J. Chang, Angew Chem Int
Ed Engl, 2018, 57, 7508-7512.
29. M. G. Lee, C. Wynder, D. M. Schmidt, D. G. McCafferty and R. Shiekhattar,
Chem Biol, 2006, 13, 563-567.
30. J. A. Miller, K. A. Kirkley, R. Padmanabhan, L. P. Liang, Y. H. Raol, M. Patel, R.
A. Bialecki and R. B. Tjalkens, Neurotoxicology, 2014, 44, 39-47.
This work is financially supported by the National Natural
Science Foundation of China (21778033), the program of
Jiangsu Specially-Appointed Professor for Y.Q., the Science and
Technology Innovation Project of Nanjing (184080H201136),
4 | J. Name., 2012, 00, 1-3
This journal is © The Royal Society of Chemistry 20xx
Please do not adjust margins