7548
J. S. Yadav et al. / Tetrahedron Letters 48 (2007) 7546–7548
Dharma Rao, P.; Suguna, H. R. Tetrahedron 1996, 52,
8001–8062; (c) Drewes, S. E.; Roos, G. H. P. Tetrahedron
1988, 44, 4653–4670.
such as IBX/InCl3, IBX/InBr3 and IBX/CeCl3Æ7H2O
were screened but none gave satisfactory yields of prod-
ucts. As solvent, acetonitrile gave the best results. The
by-product, iodosobenzoic acid was separated by a sim-
ple filtration and could be reoxidized to IBX. The scope
of the IBX promoted oxidative Michael reaction was
investigated with respect to various Baylis–Hillman
adducts and the results are presented in Table 1.13
8. (a) Varvoglis, A. Hypervalent Iodine in Organic Synthesis;
Academic Press: San Diego, 1997; (b) Wirth, T.; Hirt, U.
H. Synthesis 1999, 1271–1287; (c) Wirth, T. Angew. Chem.,
Int. Ed. 2001, 40, 2812–2814.
9. (a) Hartman, C.; Meyer, V. Chem. Ber. 1893, 26, 1727; (b)
Stang, P. J.; Zhdankin, V. V. Chem. Rev. 1996, 96, 1123–
1178; (c) Kitamura, T.; Fujiwara, Y. Org. Prep. Proced.
Int. 1997, 29, 409–458.
10. (a) Wirth, T. Angew. Chem., Int. Ed. 2001, 40, 2812–2814;
(b) Ladziata, U.; Zhdankin, V. V. Arkivoc 2006, ix, 26–
58.
11. (a) Nicolaou, K. C.; Montagnon, T.; Baran, P. S. Angew.
Chem., Int. Ed. 2002, 41, 993–996; (b) Nicolaou, K. C.;
Barn, P. S.; Zhong, Y.-L.; Barluenga, S.; Hunt, K. W.;
Kranich, R.; Vega, J. A. J. Am. Chem. Soc. 2002, 124,
2233–2244.
In conclusion, we have described an efficient protocol
for the one-pot oxidative conjugate addition of allyltri-
methylsilane to Baylis–Hillman adducts using IBX/
Sc(OTf)3 as a novel catalytic system. The method offers
several advantages such as operational simplicity, mild
reaction conditions, cleaner reaction profiles, simple
work-up procedure and the use of inexpensive and read-
ily available reagents, which makes it a useful and
attractive strategy for the preparation of homoallyl
b-ketoesters in a single step operation.
12. Yu, C.; Liu, B.; Hu, L. J. Org. Chem. 2001, 66, 5413–5418.
13. Experimental procedure: A mixture of Baylis–Hillman
adduct (1 mmol) and IBX (1.2 mmol) in acetonitrile
(10 ml) was stirred at room temperature until complete
oxidation took place. Allyltrimethylsilane (1.5 mmol) and
Sc(OTf)3 (10 mol %) were added sequentially and the
reaction stirred at room temperature. The reaction mix-
ture was then diluted with saturated aqueous NaHCO3
solution (15 ml) and extracted with EtOAc (3 · 10 ml).
The combined organic layers were washed with brine
(1 · 10 ml), dried over anhydrous Na2SO4 and evaporated
under reduced pressure. The resulting product was puri-
fied by silica gel column chromatography using a gradient
mixture of hexane/ethyl acetate (9.5:0.5) as eluent to afford
the pure Michael adduct. Spectral data for selected
compounds: 3e: Colourless oil: IR (neat): t 3072, 2925,
2853, 1737, 1690, 1565, 1418, 1287, 1191, 1023, 915,
Acknowledgement
A.P.S. and A.K.B. thank CSIR, New Delhi, for the
award of fellowships.
References and notes
1. (a) Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207–
2293; (b) Marshall, J. A. Chemtracts 1992, 5, 75–106; (c)
Ramachandran, P. V. Aldrichim. Acta 2002, 35, 23–35; (d)
Colvin, E. Silicon in Organic Synthesis; Butterworth:
London, 1981, pp 97; (e) Hosomi, A. Acc. Chem. Res.
1988, 21, 200.
2. Kobayashi, S. Eur. J. Org. Chem. 1999, 15–27.
3. (a) Lee, K. Y.; Kim, J. M.; Kim, J. N. Tetrahedron Lett.
2003, 44, 6737–6740; (b) Lee, K. Y.; Kim, J. M.; Kim, J.
N. Tetrahedron 2003, 59, 385–390; (c) Im, Y. J.; Lee, K.
Y.; Kim, T. H.; Kim, J. N. Tetrahedron Lett. 2002, 43,
4675–4678.
758 cmÀ1 1H NMR (CDCl3, 300 MHz) d 1.19 (t, 3H,
.
J = 6.8 Hz), 2.01–2.16 (m, 4H), 4.07–4.30 (m, 2H), 4.97–
5.05 (m, 2H), 5.69–5.83 (m, 1H), 7.34 (t, 1H, J = 8.3 Hz),
7.68 (d, 1H, J = 8.3 Hz), 7.87 (d, 1H, J = 8.3 Hz), 8.04 (s,
1H), 8.02 (s, 1H). ESIMS: m/z: 325 (M+H)+, 347
(M+Na)+. HRMS calcd for C15H17O3NaBr: 347.0258.
Found: 347.0266. 3g: Colourless oil: IR (neat): t 2955,
2930, 2860, 1744, 1715, 1640, 1438, 1355, 1248, 1167, 915,
746 cmÀ1 1H NMR (CDCl3, 300 MHz) d 0.89 (t, 3H,
.
4. (a) Kim, J. N.; Kim, J. M.; Lee, K. Y. Synlett 2003, 821–
824; (b) Kim, J. N.; Kim, H. S.; Gong, J. H.; Chung, Y.
M. Tetrahedron Lett. 2001, 42, 8341–8344.
J = 6.8 Hz), 1.20–1.44 (m, 6H), 1.47–1.63 (m, 2H), 1.86–
2.04 (m, 2H), 2.34–2.58 (m, 2H), 3.40 (t, 1H, J = 6.8 Hz),
3.71 (s, 3H), 4.95–5.05 (m, 2H), 5.64–5.80 (m, 1H). ESIMS
m/z: 227 (M+H)+. HRMS calcd for C13H22O3Na:
249.1466. Found: 249.1478. 3j: Colourless oil: IR (neat):
t 2925, 1740, 1670, 1593, 1492, 1274, 1221, 1164, 1042,
5. (a) Drewes, S. E.; Emslie, N. D. J. Chem. Soc., Perkin
Trans. 1 1982, 2079–2083; (b) Hoffmann, H. M. R.; Rabe,
J. Helv. Chim. Acta 1984, 67, 413–415; (c) Hoffmann, H.
M. R.; Rabe, J. J. Org. Chem. 1985, 50, 3849–3859.
6. (a) Hoffmann, H. M. R.; Rabe, J. Angew. Chem., Int. Ed.
Engl. 1985, 24, 94–110; (b) Buchholz, R.; Hoffmann, H.
M. R. Helv. Chim. Acta 1991, 74, 1213–1220; (c) Ameer,
F.; Drewes, S. E.; Hoole, R. F. A.; Kaye, P. T.; Pitchford,
A. T. J. Chem. Soc., Perkin Trans. 1 1985, 2713–2717.
7. (a) Basavaiah, D.; Jaganmohan Rao, A.; Satyanarayana,
T. Chem. Rev. 2003, 103, 811–891; (b) Basavaiah, D.;
1
761 cmÀ1. H NMR (CDCl3, 200 MHz): d 1.73–2.00 (m,
4H), 3.49 (s, 3H), 3.63 (s, 3H), 3.67 (s, 3H), 4.10 (t, 1H,
J = 6.6 Hz), 4.75–4.89 (m, 2H), 5.49–5.71 (m, 1H), 6.69 (d,
1H, J = 9.1 Hz), 6.84 (dd, 1H, J = 2.4 and 8.3 Hz), 7.13
(d, 1H, J = 2.4 Hz). ESIMS: m/z: 293 (M+H)+, 315
(M+Na)+. HRMS calcd for C16H20O5Na: 315.1208.
Found: 315.1203.