We thank the Volkswagen Foundation for the financial
support of this work and Dr S. Uemura and Dr V. Stepanenko
for AFM measurements.
Notes and references
1
(a) S. S. Babu, S. Prasanthkumar and A. Ajayaghosh, Angew.
Chem., Int. Ed., 2012, 51, 1766; (b) A. Schenning and E. W. Meijer,
Chem. Commun., 2005, 3245.
2
(a) T. Aida, E. W. Meijer and S. I. Stupp, Science, 2012, 335, 813;
(
b) T. Aida and T. Fukushima, Philos. Trans. R. Soc. London,
Ser. A, 2007, 365, 1539; (c) M. A. Balbo Block, C. Kaiser, A. Khan
and S. Hecht, Top. Curr. Chem., 2005, 245, 89.
Fig. 2 (a) Solvent-dependent UV/Vis spectra of ZnChl 1 in n-hexane/
À6
THF (c = 1.1 Â 10 M) with variation of THF content from 1–10%;
3
(a) J. L. Mynar, T. Yamamoto, A. Kosaka, T. Fukushima, N. Ishii
and T. Aida, J. Am. Chem. Soc., 2008, 130, 1530; (b) W. Jin,
T. Fukushima, A. Kosaka, M. Niki, N. Ishii and T. Aida, J. Am.
Chem. Soc., 2005, 127, 8284; (c) S. Hecht and A. Khan, Angew.
Chem., Int. Ed., 2003, 42, 6021.
the arrows indicate spectral changes with increasing content of THF
(10% THF: dotted line). (b) Spectrum of cross-linked aggregates
containing 10% THF.
4
5
6
(a) T. Ishi-i, R. Kuwahara, A. Takata, Y. Jeong, K. Sakurai and
S. Mataka, Chem.–Eur. J., 2006, 12, 763; (b) Y. Kim, M. F. Mayer
and S. C. Zimmerman, Angew. Chem., Int. Ed., 2003, 42, 1121.
(a) D. Astruc, A. K. Diallo, S. Gatard, L. Liang, C. Ornelas,
V. Martinez, D. Me
, 94; (b) T. M. Trnka and R. H. Grubbs, Acc. Chem. Res., 2001, 34, 18.
(a) V. Percec, C.-H. Ahn and B. Barboiu, J. Am. Chem. Soc., 1997,
19, 12978; (b) X. Zhang, Z. Chen and F. Wurthner, J. Am. Chem.
´
ry and J. Ruiz, Beilstein J. Org. Chem., 2011,
7
1
¨
Soc., 2007, 129, 4886; (c) D. Kim, E. Kim, J. Kim, K. M. Park,
K. Baek, M. Jung, Y. H. Ko, W. Sung, H. S. Kim, J. H. Suh,
C. G. Park, O. S. Na, D.-k. Lee, K. E. Lee, S. S. Han and K. Kim,
Angew. Chem., Int. Ed., 2007, 46, 3471.
7
8
T. S. Balaban, H. Tamiaki and A. R. Holzwarth, Top. Curr.
Chem., 2005, 258, 1.
(a) H. Tamiaki, Photochem. Photobiol. Sci., 2005, 4, 675;
(
b) H. Tamiaki, M. Amakawa, Y. Shimono, R. Tanikaga,
A. R. Holzwarth and K. Schaffner, Photochem. Photobiol., 1996,
3, 92; (c) H. Tamiaki, Coord. Chem. Rev., 1996, 148, 183.
6
9
(a) M. Numata, D. Kinoshita, N. Taniguchi, H. Tamiaki and
A. Ohta, Angew. Chem., Int. Ed., 2012, 51, 1844; (b) T. Miyatake
and H. Tamiaki, Coord. Chem. Rev., 2010, 254, 2593.
1
¨
0 (a) V. Huber, M. Katterle, M. Lysetska and F. Wurthner, Angew.
Chem., Int. Ed., 2005, 44, 3147; (b) V. Huber, S. Sengupta and
Fig. 3 (a) AFM height image of a sample prepared from an aggregate
À6
F. Wu
1 C. Ro
F. Wu
¨
rthner, Chem.–Eur. J., 2008, 14, 7791.
ger, Y. Miloslavina, D. Brunner, A. R. Holzwarth and
rthner, J. Am. Chem. Soc., 2008, 130, 5929.
solution (c = 1.1 Â 10 M) of ZnChl 1 in n-hexane/THF (100 : 1, v/v)
1
1
¨
by spin coating at 4000 rpm onto HOPG before olefin metathesis and
¨
(b) corresponding phase image. Inset in (a) shows a cross section
2 BChl self-assembly has also been mimicked with porphyrins, see:
(a) S. V. Bhosale, M. B. Kalyankar, S. V. Nalage, S. V. Bhosale,
C. H. Lalander and S. J. Langford, Supramol. Chem., 2011, 23, 563;
analysis with a height of B6 nm. (c) AFM height image of the aggregate
À6
solution of 1 after olefin metathesis reaction (c =1.1 Â 10 M) and
(
b) S. V. Bhosale, M. B. Kalyankar, S. V. Bhosale, S. G. Patil, C. H.
Lalander, S. J. Langford and S. V. Nalage, Supramol. Chem., 2011,
3, 263; (c) T. S. Balaban, M. Linke-Schaetzel, A. D. Bhise, N.
Vanthuyne, C. Roussel, C. E. Anson, G. Buth, A. Eichhofer, K.
Foster, G. Garab, H. Gliemann, R. Goddard, T. Javorfi, A. K.
Powell, H. Rosner and T. Schimmel, Chem.–Eur. J., 2005, 11, 2267.
13 K. M. Smith, D. A. Goff and D. J. Simpson, J. Am. Chem. Soc.,
985, 107, 4946.
4 F. Wurthner, T. E. Kaiser and C. R. Saha-Mo
Int. Ed., 2011, 50, 3376.
(d) corresponding phase image.
2
1
with large contour lengths were observed for aggregates
¨
before metathesis reaction, while the aggregates appear much
stiffer after cross-linking (Fig. 3c and d). Furthermore, AFM
images indicate intra-aggregate cross-linking since isolated
nanorods were observed and no bundles or network structures
were visible. These observations also suggest that the nanorods
are cross-linked and stabilized by the olefin metathesis reaction.
In conclusion, a novel chlorophyll derivative ZnChl 1
functionalized with peripheral olefinic groups was synthesised,
which self-assembles into well-defined nanorods. For the first
time, binding constants and thermodynamic data for the self-
assembly of a ZnChl building block have been determined.
Cross-linking within the nanorods of ZnChl 1 provided highly
stable and stiff nanorods. Upon considering well-established
¨
1
1
¨
¨
ller, Angew. Chem.,
15 (a) M. M. J. Smulders, M. M. L. Nieuwenhuizen, T. F. A. de
Greef, P. van der Schoot, A. P. H. J. Schenning and E. W. Meijer,
Chem.–Eur. J., 2010, 16, 362; (b) T. F. A. de Greef, M. M.
J. Smulders, M. Wolffs, A. P. H. J. Schenning, R. P. Sijbesma
and E. W. Meijer, Chem. Rev., 2009, 109, 5687.
¨
¨
16 (a) Z. Chen, A. Lohr, C. R. Saha-Moller and F. Wurthner, Chem.
Soc. Rev., 2009, 38, 564; (b) K. Sauer, J. R. L. Smith and
A. J. Schultz, J. Am. Chem. Soc., 1966, 88, 2681; (c) S. Aronoff,
Arch. Biochem. Biophys., 1962, 98, 344.
17 (a) V. I. Prokhorenko, D. B. Steensgaard and A. Holzwarth, Biophys.
J., 2000, 79, 2105; (b) D. C. Brune, G. H. King, A. Infosino, T. Steiner,
M. L. W. Thewalt and R. E. Blankenship, Biochemistry, 1987, 26, 8652.
1
7
18
exciton transport and promising photovoltaic properties
of zinc chlorin aggregates, the present covalently stabilized
one-dimensional nanorods appear to be highly promising for
device application.
1
8 (a) P. L. Marek, H. Hahn and T. S. Balaban, Energy Environ. Sci.,
011, 4, 2366; (b) X.-F. Wang and H. Tamiaki, Energy Environ. Sci.,
2010, 3, 94.
2
5
732 Chem. Commun., 2012, 48, 5730–5732
This journal is c The Royal Society of Chemistry 2012