to 80 ꢀC under N2 , several drops of DBU were then added.
The mixture was heated to reflux for 16 h and the solvent eva-
porated to dryness under reduced pressure. The residue was
washed thoroughly with methanol (4 ꢄ 25 cm3) and then pur-
ified by column chromatography on silica gel with CHCl3 as
eluent. A green fraction was collected, the solvent removed
in vacuo and 4 was isolated in 26% yield (0.11 g). MS (FAB
+ve) m/z: 1202 (M+); UV-vis (CHCl3) l/nm: 765, 720, 675,
330.
films, Richard Monkhouse for assistance with the transient
absorption spectrometer and Emilio Palomares for help with
excitation and emission studies.
References
Tetra(hydroxy)-2,3-naphthalocyaninatozinc(II) (5). 4 (0.10 g,
0.08 mmol) was mixed with trifluoroacetic acid (10 cm3) and
tetramethylbenzene (0.1 g, 0.75 mmol) and the mixture heated
to reflux overnight. The solution was evaporated to dryness
and the residue washed with CH2Cl2 (3 ꢄ 25 cm3). The green
solid was then reprecipitated from THF–CH2Cl2 , collected
by filtration and used directly in the next step. Yield: 55%
(0.034 g). MS (FAB +ve) m/z: 776 (M+); UV-vis (THF) l/
nm: 772, 726, 680, 335.
1
2
E. F. Bradbrook and R. P. Linstead, J. Chem. Soc., 1936, 1744.
(a) H. S. Nalwa and J. S. Shirk, in Phthalocyanines: Properties and
Applications, ed. C. C. Leznoff and A. B. P. Lever, VCH, 1996,
vol. 4, ch. 3; (b) N. B. McKeown, Phthalocyanine Materials:
Synthesis, Structure and Function, Cambridge University Press,
Cambridge, 1998.
3
B. Gorlach, M. Dachtler, T. Glaser, K. Albert and M. Hanack,
Chem. Eur. J., 2001, 7, 2459 and references therein.
A. Vogler and H. Kunkely, Inorg. Chim. Acta, 1980, 44, L209.
M. Hanack, G. Renz, J. Strahle and S. Schmid, Chem. Ber., 1988,
121, 1479.
4
5
Tetra(ethoxycarbonylmethoxy)-2,3-naphthalocyaninatozin-
c(II) (6). 5 (0.05 g, 0.06 mmol) was dissolved in DMF (20 cm3)
and potassium carbonate (0.5 g) and ethyl chloroacetate (1.00
g, 8.13 mmol) added. The mixture was heated to 60 ꢀC for 24 h
under N2 . The solvent was then removed in vacuo and the
crude residue washed with methanol (2 ꢄ 25 cm3) and sub-
jected to column chromatography on silica gel using CHCl3–
methanol (95:5) as eluent. A green fraction was collected which
yielded the product in 42% yield (0.03 g). Found: C, 64.59; H,
4.02; N, 8.91; C64H48N8O12Zn requires C, 64.79; H, 4.08; N,
9.44%; MS (FAB +ve) m/z: 1186 (M+ + H); UV-vis (CHCl3)
l/nm: 768, 720, 678, 333; dH (CDCl3): 9.10–7.25 (20 H, br,
aromatic), 5.30–5.10 (8 H, br, OCH2), 4.40–4.20 (8 H, br,
CH2), 1.55–1.30 (12 H, br, CH3).
6
7
8
9
M. Hanack, G. Renz, J. Strahle and S. Schmid, J. Org. Chem.,
1991, 56, 3501.
M. J. Cook, A. J. Dunn, S. D. Howe, A. J. Thomson and K. J.
Harrison, J. Chem. Soc., Perkin Trans. I, 1988, 2453.
E. I. Kovshev, V. A. Puchnova and E. A. Luk’yanets, Zh. Org.
Khim., 1971, 7, 369.
R. Polley and M. Hanack, J. Org. Chem., 1995, 60, 8278.
10 A. N. Cammidge, I. Chambrier, M. J. Cook, A. D. Garland, M. J.
Heeney and K. Welford, J. Porphyrins Phthalocyanines, 1997, 1,
77.
11 (a) M. Brewis, G. J. Clarkson, P. Humberstone, S. Makheed and
N. B. McKeown, Chem. Eur. J., 1998, 4, 1633; (b) P. Humber-
stone, G. J. Clarkson, N. B. McKeown and K. E. Treacher, J.
Mater. Chem., 1996, 6, 315.
12 M. Hanack, T. Schneider, H. Heckmann and M. Barthel, Eur. J.
Org. Chem., 2001, 3055.
13 N. Q. Wang, Y. M. Cai, J. R. Hoflin, J. W. Wu, D. L. Rodenber-
ger and A. F. Garito, Polymer, 1991, 32, 1752.
Tetra(hydroxycarbonylmethoxy)-2,3-naphthalocyaninatozin-
c(II) (7). 6 (0.03 g, 0.02 mmol) was dissolved in THF (20 cm3)
and added to a solution of potassium hydroxide (0.20 g) in
water (1 cm3). The mixture was stirred at room temperature
for 3 h and then diluted by addition of water (20 cm3). The
mixture was filtered and the solution acidified with conc.
HCl, during which time a green solid formed. This was col-
lected by filtration and dried in vacuo to yield 7 in 61% yield
(0.013 g). MS (FAB +ve) m/z: 1073 (M+); HRMS: found
m/z 1074.2691, calculated for C56H32N8O12Zn m/z
1074.2952; UV-vis (DMF) l/nm: 765, 726, 682, 343. IR
(KBr) n/cmꢂ1: 3479 (w, OH), 2918 (s, CH2), 1717 (m, C=O),
1615 (s, C=O).
14 (a) H. S. Nalwa, A. Kakuta and A. Mukoh, Chem. Phys. Lett.,
1993, 203, 109; (b) H. S. Nalwa, A. Kakuta and A. Mukoh, J.
Phys. Chem., 1993, 97, 1097; (c) Y.-O. Yeung, R. C. W. Liu,
W.-F. Law, P.-L. Lau, J. Jiang and D. K. P. Ng, Tetrahedron,
1997, 53, 9087.
15 (a) B. O’Regan and M. Gra¨tzel, Nature, 1991, 353, 737; (b) S. A.
Haque, Y. Tachibana, D. R. Klug and J. R. Durrant, J. Phys.
Chem. B., 1998, 102, 1745.
16 D. Wohrle and D. Meissner, Adv. Mater., 1991, 3, 129.
17 V. N. Koprannenkov, E. A. Makarova and E. A. Luk’yanets, Zh.
Org. Khim., 1981, 17, 358.
18 M. K. Nazeeruddin, R. Humphry-Baker, M. Gra¨tzel and B. A.
Murrer, Chem. Commun., 1998, 719.
19 A. F. Nogueira, M. A. De Paoli, I. Montanari, R. Monkhouse,
J. Nelson and J. R. Nelson, J. Phys. Chem. B, 2001, 105, 7517.
20 K. Kalyanasundaram and M. Gra¨tzel, Coord. Chem. Rev., 1998,
77, 347.
Acknowledgements
21 R. Willis, C. Olsen, B. O’Regan, T. Lutz, J. Nelson and J. R. Dur-
rant, J. Phys. Chem. B., in press.
We are very grateful to the EPSRC for funding. We thank
Richard Willis and Thierry Lutz for fabrication of the TiO2
22 S. Haque, Y. Tachibana, D. R. Klug and J. R. Durrant, J. Phys.
Chem. B, 1998, 102, 1745.
1080
New J. Chem., 2002, 26, 1076–1080