J. CHEM. RESEARCH (S), 1998 353
�
1
1
700 cm (C1O). (Found: C, 63.5; H, 6.6; N, 13.8. C16
H N O
21 3 3
requires C, 63.37; H, 6.93; N, 13.86%).
Compound 5.ÐYield 80%, mp 180±182 8C (EtOH), M at m/z
1
3
3
19; H NMR (CDCl
.30 (s, 3 H, CH ), 3.47 (s, 3 H, NCH
), 8.25 (s, 1 H, 1CH); C NMR (CDCl
DEPT-135) ꢀ 25.10 (ve, CH ), 28.43 (ve, NCH ), 29.49 (ve,
NCH ), 134.93 (ve, CH),
), 39.36 (ve, NCH
06.43 (absent), 107.95 (absent), 127.28 (absent), 134.97 (absent),
54.97 (absent), 160.17 (absent), 164.6 (absent), 171.17 (absent);
3
) ꢀ 2.56 (s, 3 H, CH
3 3
), 3.10 (s, 3 H, CH ),
3
3
), 3.71 (d, J 4.63 Hz, 3 H,
13
NHCH
3
3
) (Normal/
3
3
3
), 34.38 (ve, NCH
3
3
1
1
�
1
IR (KBr) ꢁ~max 1610 (C1O), 1700 cm (C1O) (Found: C, 51.9;
H, 5.24; N, 21.3.
N, 21.94%).
C
14
H
17
N
5
O
4
requires C, 52.66; H, 5.37;
Compound 7.ÐYield 8%, mp 120±125 8C (EtOH), M at m/z
1
46; H NMR (CDCl
2
2
1
3
) ꢀ 2.58 (s, 3 H, CH
), 3.09 (s, 3 H, NCH
) (Normal/DEPT-135) ꢀ 22.76 (ve,
),
3
), 2.79 (s, 3 H, CH
3
),
.96 (d, J 4.8 Hz, 3 H, NHCH
3
3
), 7.72 (s,
13
H, 1CH); C NMR (CDCl
3
CH
3
), 23.58 (ve, CH
3
), 27.12 (ve, NCH
3
), 34.07 (ve, NCH
3
1
1
06.74 (absent), 115.99 (absent), 129.59 (absent), 136.67 (ve, CH),
54.66 (absent), 157.41 (absent), 162.19 (absent), 171.02 (absent);
�
1
IR (KBr) ꢁ~max 1661 (C1O), 1690 (C1O), 2240 cm (C2N).
Compound 9.ÐYield 80%, mp 300±310 8C (CHCl ±hexane), M
), 3.75 (s,
Scheme 3
3
1
at m/z 303; H NMR (CDCl
3
) ꢀ 3.49 (s, 6 H, 2Â NCH
3
13
1
the electron-withdrawing ability of the substituent (R ) at
6 H, 2 ÂNCH
3
), 9.18 (s, 1 H, CH); C NMR (CDCl
3
q NCH ), 30.15 (q, NCH
3
) ꢀ 28.71
(
3
), 96.20 (s, >C<), 106.52 (s, >C<),
the b position of the enamine increases, the nucleophilicity
1
39.73 (d, CH), 172.6 (s, C1O), 193 (s, C1O); IR (KBr) ꢁ~max 1660
�
1
of enamine NH
2
and consequently the yield of the ring-
(C1O), 1600 cm (C1C) (Found: C, 50.74; H, 4.02; N, 24.68%.
requires C, 51.48; H, 4.29; N, 23.10%).
transformation product [CON (80%), CO (50%), CN (8%)]
decreases. Further in the case of reactions of 5-formyl-1,3-
dimethyluracil with these enamines, the formation of
13 13 5 4
C H N O
We thank the University Grants Commission (India) for
nancial assistance.
8
®
dihydropyridines through intermediate 14 occurs but when
Me is present at C(6), the intermediate 13 does not
form dihydropyridine derivatives. It has been found that
Received, 2nd December 1997; Accepted, 9th March 1998
Paper E/7/08683K
5
-vinyluracil and 6-methyl-5-vinyluracils have cis- and trans-
diene con®gurations, respectively, which the intermediates
3 and 14 would respectively acquire. In intermediate 13 the
1
References
steric bulk of the Me group probably restricts the attack of
enamine and respective dihydropyridine derivatives are not
formed (Scheme 3).
1
H. Wamho, J. Dzenis and K. Hirota, in Adv. Heterocycl.
Chem., 1992, 55, 129; D. J. Brown, in Comprehensive
Heterocyclic ChemistryÐThe Structure, Reactions, Synthesis and
Uses Of Heterocyclic Compounds, ed. A. R. Katritzky and C. W.
Rees, Pergamon Press, Oxford, 1984, vol. 3, pp. 57±155.
Thus, 5-formyl-1,3,6-trimethyluracil 1 undergoes facile
ring tranformations with enamines under acidic conditions
to provide carbamoylpyridine derivatives, and the methyl
2 E. G. Sander, in Bioorganic Chemistry, ed. E. E. Van Tamelen,
Academic Press, New York, 1977, vol. 2, pp. 273±297 and refs.
therein; T. K. Bradshaw and D. W. Hutchinson, Chem. Soc.
Rev., 1977, 6, 43.
�
at C(6) does not contribute 6-CH2 induced annulation
reactions and rather restricts the usual Hantszch-type
dihydropyridine formation reactions of the 5-formyl group.
3
H. C. van der Plas, Ring Transformations of Heterocycles,
Academic Press, New York, 1975, vol. 1±2; Tetrahedron, 1985,
Experimental
41, 237.
Melting points were determined in capillaries and are uncorrected.
H and C NMR spectra were run on a Bruker AC200 MHz
4 K. Hirota, Y. Kitade and S. Senda, (a) J. Chem. Soc., Perkin
Trans. 1, 1984, 1859 and refs. therein; (b) J. Org. Chem., 1981,
46, 3949.
5 S. Kumar, S. S. Chimni, D. Cannoo and J. Singh, Bioorg. Med.
Chem., 1995, 3, 891 and refs. therein.
1
13
instrument using TMS as an internal standard. Mass, infrared
and UV spectra were recorded on Shimadzu GCMS-QP-2000,
Philips Scienti®c SP3-300 and Shimadzu UV-240 spectrometers,
respectively. Elemental analyses of solid samples were performed
at the microanalytical laboratory of the Regional Sophisticated
Instrumentation Centre, Chandigarh.
Reactions of 5-Formyluracils 1, 8 with Enamines: General Procedure.
ÐA solution of compound 1 or 8 (1.00 g, 5.95 mmol), enamine
3
2 equivalent, 12 mmol) in CH CN (10 ml) containing TFA (0.1 ml)
6 H. Singh, P. Singh, S. S. Chimni and S. Kumar, J. Chem. Soc.,
Perkin Trans. 1, 1995, 2363.
7 K. Hirota, K. A. Watanabe and J. J. Fox, J. Org. Chem., 1978,
43, 1193; K. Hirota, T. Asao, I. Sugiyama and S. Senda,
Heterocycles, 1987, 15, 289; M. Noguchi, K. Sakamoto,
S. Nagata and S. Kajigaeshi, J. Heterocycl. Chem., 1988, 25,
205; N. Yasue, S. Ishikawa and M. Noguchi, Bull. Chem. Soc.
Jpn., 1992, 65, 2845; K. Hirota, Y. Kitade, K. Shimada and
Y. Maki, J. Org. Chem., 1985, 50, 1512.
8 H. Singh, Dolly, S. S. Chimni and S. Kumar, Tetrahedron, 1995,
51, 12775.
9 Under neutral conditions, enamines fail to react with aldehydes.
See also K. Hirota, K. Kubo, H. Sajaki, Y. Kitade, M. Sako
and Y. Maki, J. Org. Chem., 1997, 62, 2999.
10 A. Sivaprasad, J. S. Sandhu and J. N. Baruah, Indian J. Chem.,
Sect. B, 1985, 24, 305.
11 I. H. Pitman, M. J. Cho and G. S. Pork, J. Am. Chem. Soc.,
1974, 96, 1840; B. A. Otter, E. A. Falco and J. J. Fox, J. Org.
Chem., 1968, 33, 3593.
(
was re¯uxed. The progress of the reaction was monitored by TLC
and after completion (5±6 h) the solvent was distilled o. The
residue was chromatographed on a silica gel column using hexane±
ethyl acetate mixtures as eluents.
+
Compound 3.ÐYield 50%, mp 92 8C, M at m/z 303 (EtOH);
1
H NMR (CDCl
3
) ꢀ 1.14 (s, 6 H, 2Â CH
.99 (d, J 4.8 Hz, 3 H, NHCH ), 3.02 (s, 3 H, CH
H, CH ), 8.07 (s, 1 H, C1CH), 9.03 (br, 1 H, NH); C NMR
) (Normal/DEPT-135) ꢀ 22.72 (ve, CH ), 27.04 (ve,
), 26.23 (ve, CH ), 34.15 (ve, CH ), 46.22 (�ve, CH ), 51.75
3
), 2.58 (s, 4 H, 2Â CH
2
),
2
3
3
3
), 3.09 (s,
13
3
(
CDCl
3
3
CH
3
3
3
2
(
�ve, CH
2
), 131.52 (ve, CH), 124.60 (absent), 131.53 (absent),
1
1
54.60 (absent), 156.42 (absent), 162.55 (absent), 172.15 (absent),
96.36 (absent); IR (KBr) ꢁ~max 1660 (C1O), 1600 (C1O),