macrocycle is located over the succinamide template (Scheme 1,
Fig. 1a and 1b).
We thank Prof. David A. Leigh for helpful discussions and for
introducing us to this field. This work was carried out with partial
support from the University of Trieste, INSTM, MIUR (PRIN
2006, prot. 2006034372 and Firb, prot. RBNE033KMA), and the
EU (RTN networks ‘‘WONDERFULL’’ and ‘‘EMMMA’’).
Rotaxane 3 was allowed to react with mCPBA using the high
dilution conditions for the preparation of thread N-oxide 2.
Rotaxane 4 was purified from unreacted rotaxane 3 by flash
chromatography, followed by reprecipitation–centrifugation. As
expected, rotaxane 4 presents the lowest solubility of the whole set
Notes and references
of molecules studied, being almost insoluble in CDCl . However,
3
1
A. Mateo-Alonso, N. Tagmatarchis and M. Prato, Fullerenes and their
derivatives, in Nanomaterials Handbook, ed. Y. Gogotsi, Taylor &
Francis CRC Press, Boca Raton, FL, 2006, pp. 29–67.
A. Mateo-Alonso, D. Bonifazi and M. Prato, Organic Functionalization
of [60]Fullerene, in Carbon Nanotechnology, ed. L. Dai, Elsevier,
Amsterdam, 2006, pp. 155–189.
M. Maggini, G. Scorrano and M. Prato, J. Am. Chem. Soc., 1993, 115,
9798.
M. Prato and M. Maggini, Acc. Chem. Res., 1998, 31, 519.
the compound was sparingly soluble in CDCl –CD OD 99 : 1. In
3
3
the NMR spectrum of rotaxane 4 (Scheme 1, Fig. 1d), shielding of
protons D, J and G (0.4, 0.9 and 1.2 ppm respectively) is observed
when compared with thread N-oxide 2 (Fig. 1c), while protons K
undergo negligible shielding in comparison with thread N-oxide 2
2
3
4
(Fig. 1c) and are deshielded by 1.1 ppm in comparison with
rotaxane 3 (Fig. 1b). Therefore the macrocycle was displaced from
the succinamide template to bind preferentially the N-oxide and
the adjacent amide. This is consistent with the fact that N-oxides
5 P. Brough, C. Klumpp, A. Bianco, S. Campidelli and M. Prato, J. Org.
Chem., 2006, 71, 2014.
6 L. Echegoyen and L. E. Echegoyen, Acc. Chem. Res., 1998, 31, 593.
7
8
2
4
are better hydrogen bond acceptors than amides. The macrocycle
X. Creary, Acc. Chem. Res., 2006, 39, 761.
D. M. Guldi, G. M. A. Rahman, V. Sgobba and C. Ehli, Chem. Soc.
Rev., 2006, 35, 471.
is located over the mixed N-oxide–amide binding site even in
DMSO-d , where signals D, J and G were shielded by 0.6, 0.9 and
6
0
.9 ppm respectively. This is in contrast with what has been
9 J. R. Durrant, S. A. Haque and E. Palomares, Chem. Commun., 2006,
279.
10 E. Arunkumar, C. C. Forbes and B. D. Smith, Eur. J. Org. Chem., 2005,
051.
1 M. R. Craig, M. G. Hutchings, T. D. W. Claridge and H. L. Anderson,
3
observed previously for hydrogen bonding sites in which internal
25
rotation and intramolecular hydrogen bonds can take place,
where shuttling is a consequence of solvation of the binding
19,21
sites.
4
1
It can be argued that the shielding of protons D, J and G
Angew. Chem., Int. Ed., 2001, 40, 1071.
12 J. E. H. Buston, J. R. Young and H. L. Anderson, Chem. Commun.,
2
1
in DMSO-d
6
could be due to the reverse shuttling observed in the
2000, 905.
unoxidized rotaxane 3. However, if interactions between the
macrocycle and the fullerene were responsible for its position,
protons D would be more shielded than J and G because of the
closer proximity of the macrocycle to the fullerene as observed in
rotaxane 3, while in this case protons J and G are by far more
shielded than those of D.
1
3 E. Arunkumar, C. C. Forbes, B. C. Noll and B. D. Smith, J. Am. Chem.
Soc., 2005, 127, 3288.
14 E. Arunkumar, N. Fu and B. D. Smith, Chem.–Eur. J., 2006, 12, 4684.
15 P. N. Taylor, M. J. O’Connell, L. A. McNeill, M. J. Hall, R. T. Aplin
and H. L. Anderson, Angew. Chem., Int. Ed., 2000, 39, 3456.
1
6 F. Cacialli, J. S. Wilson, J. J. Michels, C. Daniel, C. Silva, R. H. Friend,
N. Severin, P. Samori, J. P. Rabe, M. J. O’Connell, P. N. Taylor and
H. L. Anderson, Nat. Mater., 2002, 1, 160.
Rotaxane 4 and thread N-oxide 2 show enhanced stability when
compared with other fulleropyrrolidine N-oxides and are stable for
months at 220 uC. Additionally, rotaxane 4 did not undergo
deoxygenation under the typical thermal activation conditions, 12 h
reflux in toluene–methanol (4 : 1). These results indicate that the
enhanced stability of the rotaxane N-oxide is a function of both
intramolecular hydrogen bonding and encapsulation of the
N-oxide.
17 J. J. Michels, M. J. O’Connell, P. N. Taylor, J. S. Wilson, F. Cacialli and
H. L. Anderson, Chem.–Eur. J., 2003, 9, 6167.
8 P. N. Taylor, A. J. Hagan and H. L. Anderson, Org. Biomol. Chem.,
1
2003, 1, 3851.
19 T. Da Ros, D. M. Guldi, A. F. Morales, D. A. Leigh, M. Prato and
R. Turco, Org. Lett., 2003, 5, 689.
20 A. Mateo-Alonso and M. Prato, Tetrahedron, 2006, 62, 2003.
21 A. Mateo-Alonso, G. Fioravanti, M. Marcaccio, F. Paolucci,
D. C. Jagesar, A. M. Brouwer and M. Prato, Org. Lett., 2006, 8, 5173.
We have demonstrated that the labile fulleropyrrolidine
N-oxides can be stabilized by intramolecular and intrarotaxane
hydrogen bonding. The stabilizing effect is especially strong in the
case of intrarotaxane hydrogen bonding, in which N-oxidation
could not be reversed due to encapsulation of the N-oxide by the
macrocycle.
22 A. Mateo-Alonso, G. M. A. Rahman, C. Ehli, D. M. Guldi,
G. Fioravanti, M. Marcaccio, F. Paolucci and M. Prato, Photochem.
Photobiol. Sci., 2006, 5, 1173.
2
2
2
3 W. B. Ko and K. N. Baek, Phys. Solid State, 2002, 44, 424.
4 M. H. Abraham, Chem. Soc. Rev., 1993, 22, 73.
5 F. G. Gatti, D. A. Leigh, S. A. Nepogodiev, A. M. Z. Slawin, S. J. Teat
and J. K. Y. Wong, J. Am. Chem. Soc., 2001, 123, 5983.
1
414 | Chem. Commun., 2007, 1412–1414
This journal is ß The Royal Society of Chemistry 2007