ORGANIC
LETTERS
2001
Vol. 3, No. 24
3971-3974
Nodulisporic Acid A Synthetic Studies. 2.
Construction of an Eastern Hemisphere
Subtarget
Amos B. Smith, III,* Young Shin Cho, and Haruaki Ishiyama
Department of Chemistry, UniVersity of PennsylVania,
Philadelphia, PennsylVania 19104
Received October 10, 2001
ABSTRACT
In this, the second of two Letters, we describe an effective assembly of (+)-4, an eastern hemisphere subtarget comprising the FGH rings of
(+)-nodulisporic acid A (1) (17 steps, 9% overall yield). Central to the synthesis is a Koga three-component conjugate addition−alkylation
sequence which secures the trans orientation of the vicinal quaternary methyl groups.
In 1997 the Merck group reported the isolation and structure
elucidation of (+)-nodulisporic acid A (1), a novel indole
terpene, which displays potent oral systemic activity against
fleas in dogs.1 Further study on the mechanism of action
demonstrated that nodulisporic acid A (1) acts as an
insecticide by selectively modulating the invertebrate-specific
glutamate-gated chloride ion channel.2 Efforts to identify the
key constituents of the nodulisporic acid A pharmacophore
revealed that even minor changes to the polycyclic core lead
to deleterious effects on the biological activity.3 However,
modifications of the C(8) side chain afforded several
nodulisporic acid A derivatives which exhibit enhanced
activity.4
(+)-Nodulisporic acid A (1) possesses an intriguing array
of architectural features including a highly substituted indole
core, nine stereogenic carbons, and an eight-ring fused array,
including the unique, highly strained five-membered â-
ketodihydropyrrole. Ring D, derived from isoprenylation of
the indole moiety, is unprecedented among the indole
mycotoxins.1 Also of interest vis a` vis the biogenetic origin
of (+)-nodulisporic acid is the reversal of the ring fusion of
the dihydropyran and cyclopentyl ring in the western
hemisphere compared to the janthitrems5 and shearinines.6
In the preceding Letter,7 we outlined our convergent
strategy for the construction of (+)-1, in conjunction with
an efficient synthesis of the western subtarget (-)-3, exploit-
(1) (a) Ondeyka, J. G.; Helms, G. L.; Hensens, O. D.; Goetz, M. A.;
Zink, D. L.; Tsipouras, A.; Shoop, W. L.; Slayton, L.; Dombrowski, A.
W.; Polishook, J. D.; Ostlind, D. A.; Tsou, N. N.; Ball, R. G.; Singh, S. B.
J. Am. Chem. Soc. 1997, 119, 8809. (b) Shoop, W. L.; Gregory, L. M.;
Zakson-Aiken, M.; Michael, B. F.; Haines, H. W.; Ondeyka, J. G.; Meinke,
P. T.; Schmatz, D. M. J. Parasitol. 2001, 87, 419.
(2) (a) Smith, M. M.; Warren, V. A.; Thomas, B. S.; Brochu, R. M.;
Ertel, E. A.; Rohrer, S.; Schaeffer, J.; Schmatz, D.; Petuch, B. R.; Tang, Y.
S.; Meinke, P. T.; Kaczorowski, G. J.; Cohen, C. J. Biochemistry 2000, 39,
5543 (b) Kane, N. S.; Hirschberg, B.; Qian, S.; Hunt, D.; Thomas, B.;
Brochu, R.; Ludmerer, S. W.; Zheng, Y.; Smith, M.; Arena, J. P.; Cohen,
C. J.; Schmatz, D.; Warmke, J.; Cully, D. F. Proc. Natl. Acad. Sci. U.S.A.
2000, 97, 13949.
(4) Berger, R.; Shoop, W. L.; Pivnichny, J. V.; Warmke, L. M.; Zakson-
Aiken, M.; Owens, K. A.; deMontigny, P.; Schmatz, D. M.; Wyvratt, M.
J.; Fisher, M. H.; Meinke, P. T.; Colletti, S. L. Org. Lett. 2001, 3, 3715.
(5) de Jesus, A. E.; Steyn, P. S.; van Heerden, F. R.; Vleggaar, R. J.
Chem. Soc., Perkin Trans. 1 1984, 697.
(3) Meinke, P. T.; Ayer, M. B.; Colletti, S. L.; Li, C.; Lim, J.; Ok, D.;
Salva, S.; Schmatz, D. M.; Shih, T. L.; Shoop, W. L.; Warmke, L. M.;
Wyvratt, M. J.; Zakson-Aiken, M.; Fisher, M. H. Bioorg. Med. Chem. Lett.
2000, 10, 2371.
(6) Belofsky, G. N.; Gloer, J. B.; Wicklow, D. T.; Dowd, P. F.
Tetrahedron 1995, 51, 3959.
(7) Smith, A. B., III; Ishiyama, H.; Cho, Y. S.; Ohmoto, K. Org. Lett.
2001, 3, 3967.
10.1021/ol016888t CCC: $20.00 © 2001 American Chemical Society
Published on Web 11/03/2001