C
K. Ohmatsu et al.
Cluster
Synlett
uct (data not shown). We assumed that this competitive
background pathway could be suppressed by reducing the
amount of hydrogen peroxide. Indeed, the use of five equiv-
alents of hydrogen peroxide enabled higher enantiocontrol
without notable rate retardation (Table 1, entry 10). Finally,
lowering the temperature to –10 °C with prolonged reac-
tion time resulted in an almost quantitative formation of 3a
with a satisfactory level of enantiomeric purity (Table 1, en-
try 12).
References and Notes
(1) Overman, L. E. Acc. Chem. Res. 1980, 13, 218.
(2) (a) Arnold, J. S.; Zhang, Q.; Nguyen, H. M. Eur. J. Org. Chem. 2014,
4925. (b) Sherif, S. M.; Erian, A. W. Heterocycles 1996, 43, 1083.
(3) (a) Schmidt, R. R.; Michel, J. Angew. Chem., Int. Ed. Engl. 1980, 19,
731. (b) Schmidt, R. R. Angew. Chem., Int. Ed. Engl. 1986, 25, 212.
(4) (a) Payne, G. B.; Deming, P. H.; Williams, P. H. J. Org. Chem. 1961,
26, 659. (b) Payne, G. B. Tetrahedron 1962, 18, 763. (c) Bach, R.
D.; Knight, J. W. Org. Synth. 1981, 60, 63. (d) Arias, L. A.; Adkins,
S.; Nagel, C. J.; Bach, R. D. J. Org. Chem. 1983, 48, 888.
The scope of 1c·Br-catalyzed asymmetric direct α-hy-
droxylation of 3-substituted oxindoles 2 was explored un-
der the optimized conditions, and the representative re-
sults are summarized in Table 2.16 Generally, 5 mol% of 1c·Br
was sufficient to control the hydroxylation of a range of N-
Boc oxindoles, giving rise to the corresponding chiral hy-
droxyoxindoles 3 with uniformly high enantioselectivity.
With respect to 3-aryl oxindoles, this protocol tolerated the
incorporation of both electron-donating and electron-with-
drawing substituents (Table 2, entries 1–5). The reaction
with 3-(1-naphthyl)oxindole showed slightly lower conver-
sion (Table 2, entry 6), whereas the product was isolated in
excellent yield in the oxidation of 2 having 2-naphthyl sub-
stituent (Table 2, entry 7). 3-Alkyl oxindoles also appeared
to be suitable nucleophiles, and a similar degree of reactivi-
ty and selectivity was observed (Table 2, entries 8–14).
Moreover, this catalytic system well accommodated differ-
ently 5-substituted 3-phenyloxindoles (Table 2, entries 15–
17).
In conclusion, we have developed a catalytic enantiose-
lective α-hydroxylation of 3-substituted oxindoles using
aqueous hydrogen peroxide as a terminal oxidant. The judi-
cious use of trichloroacetonitrile and the chiral 1,2,3-tri-
azolium salt for the electrophilic activation of hydrogen
peroxide and the stereocontrol of carbon–oxygen bond for-
mation, respectively, allows for the direct asymmetric
transfer of hydroxyl group into the α-position of carbonyls.
We believe that this operationally simple, yet powerful
method will be further applied to the development of syn-
thetically valuable asymmetric hydroxylation reactions.
(5) For Payne-type oxidations of imines: (a) Schirmann, J.-P.;
Weiss, F. Tetrahedron Lett. 1972, 13, 633. (b) Kraïem, J.; Kacem,
Y.; Khiari, J.; Hassine, B. B. Synth. Commun. 2001, 31, 263.
(c) Kraïem, J.; Othman, R. B.; Hassine, B. B. C. R. Chimie 2004, 7,
1119. (d) Tka, N.; Kraïem, J.; Hassine, B. B. Synth. Commun. 2012,
42, 2994.
(6) (a) Uraguchi, D.; Tsutsumi, R.; Ooi, T. J. Am. Chem. Soc. 2013, 135,
8161. (b) Uraguchi, D.; Tsutsumi, R.; Ooi, T. Tetrahedron 2014,
70, 1691. (c) Tsutsumi, R.; Kim, S.; Uraguchi, D.; Ooi, T. Synthesis
2014, 46, 871.
(7) Ohmatsu, K.; Ando, Y.; Nakashima, T.; Ooi, T. Chem 2016, 1, 802.
(8) (a) Matsuda, H.; Yoshida, K.; Miyagawa, K.; Asao, Y.; Takayama,
S.; Nakashima, S.; Xu, F.; Yoshikawa, M. Bioorg. Med. Chem.
2007, 15, 1539. (b) Lucas-Lopez, C.; Patterson, S.; Blum, T.;
Straight, A. F.; Toth, J.; Slawin, A. M. Z.; Mitchison, T. J.; Sellers, J.
R.; Westwood, N. J. Eur. J. Org. Chem. 2005, 1736. (c) Olack, G.;
Morrison, H. J. Org. Chem. 1991, 56, 4969.
(9) (a) Acocella, M. R.; Mancheño, O. G.; Bella, M.; Jørgensen, K. A.
J. Org. Chem. 2004, 69, 8165. (b) Gong, B.; Meng, Q.; Su, T.; Lian,
M.; Wang, Q.; Gao, Z. Synlett 2009, 2659. (c) Lian, M.; Li, Z.; Du,
J.; Meng, Q.; Gao, Z. Eur. J. Org. Chem. 2010, 6525. (d) Yao, H.;
Lian, M.; Li, Z.; Wang, Y.; Meng, Q. J. Org. Chem. 2012, 77, 9601.
(e) Cai, Y.; Lian, M.; Li, Z.; Meng, Q. Tetrahedron 2012, 68, 7973.
(f) De Fusco, C.; Meninno, S.; Tedesco, C.; Lattanzi, A. Org.
Biomol. Chem. 2013, 11, 896. (g) Wang, Y.; Yin, H.; Qing, H.;
Zhao, J.; Wu, Y.; Meng, Q. Adv. Synth. Catal. 2016, 358, 737.
(10) (a) Smith, A. M. R.; Billen, D.; Hii, K. K. Chem. Commun. 2009,
3925. (b) Smith, A. M. R.; Rzepa, H. S.; White, A. J. P.; Billen, D.;
Hii, K. K. J. Org. Chem. 2010, 75, 3085.
(11) (a) Toullec, P. Y.; Bonaccorsi, C.; Mezzetti, A.; Togni, A. Proc. Natl.
Acad. Sci. U.S.A. 2004, 101, 5810. (b) Ishimaru, T.; Shibata, N.;
Nagai, J.; Nakamura, S.; Toru, T.; Kanemasa, S. J. Am. Chem. Soc.
2006, 128, 16488. (c) Jiang, J.-J.; Huang, J.; Wang, D.; Zhao, M.-
X.; Wang, F.-J.; Shi, M. Tetrahedron: Asymmetry 2010, 21, 794.
(d) Zou, L.; Wang, B.; Mu, H.; Zhang, H.; Song, Y.; Qu, J. Org. Lett.
2013, 15, 3106. (e) Gu, X.; Zhang, Y.; Xu, Z.-J.; Che, C.-M. Chem.
Commun. 2014, 50, 7870. (f) Naganawa, Y.; Aoyama, T.;
Nishiyama, H. Org. Biomol. Chem. 2015, 13, 11499. (g) Lin, X.;
Ruan, S.; Yao, Q.; Yin, C.; Lin, L.; Feng, X.; Liu, X. Org. Lett. 2016,
18, 3602.
Acknowledgment
Financial support was provided by CREST (JST), JSPS KAKENHI Grant
Number JP16H01015 in Precisely Designed Catalysts with Custom-
ized Scaffolding, and the Program for Leading Graduate Schools ‘Inte-
grative Graduate Education and Research Program in Green Natural
Sciences’ at Nagoya University.
(12) Lu, M.; Zhu, D.; Lu, Y.; Zeng, X.; Tan, B.; Xu, Z.; Zhong, G. J. Am.
Chem. Soc. 2009, 131, 4562.
(13) (a) Masui, M.; Ando, A.; Shioiri, T. Tetrahedron Lett. 1988, 29,
2835. (b) de Vries, E. F. J.; Ploeg, L.; Colao, M.; Brussee, J.; van der
Gen, A. Tetrahedron: Asymmetry 1995, 6, 1123. (c) Sano, D.;
Nagata, K.; Itoh, T. Org. Lett. 2008, 10, 1593. (d) Yang, Y.;
Moinodeen, F.; Chin, W.; Ma, T.; Jiang, Z.; Tan, C.-H. Org. Lett.
2012, 14, 4762. (e) Lian, M.; Li, Z.; Cai, Y.; Meng, Q.; Gao, Z.
Chem. Asian J. 2012, 7, 2019. (f) Sim, S.-B. D.; Wang, M.; Zhao, Y.
ACS Catal. 2015, 5, 3609. (g) Wang, Y.; Yin, H.; Tang, X.; Wu, Y.;
Meng, Q.; Gao, Z. J. Org. Chem. 2016, 81, 7042.
Supporting Information
Supporting information for this article is available online at
S
u
p
p
ortioInfgrmoaitn
S
u
p
p
ortiInfogrmoaitn
© Georg Thieme Verlag Stuttgart · New York — Synlett 2017, 28, A–D