G Model
CCLET 3314 1–6
6
R.-Y. Yang et al. / Chinese Chemical Letters xxx (2015) xxx–xxx
[5] (a) M.R. Banghart, M. Volgraf, D. Trauner, Engineering light-gated ion channels,
Biochemistry 45 (2006) 15129–15141;
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
255
256
257
258
259
260
261
262
263
264
265
trans-isomer of hydraphile 1 provided higher transmembrane
activity than that of cis-isomer. Meanwhile, the transmembrane
activity showed reversible regulation upon alternative irradiation
of 365 nm UV light and 450 nm visible light (as shown in Fig. 4b).
All these verified the intention for the initial design of light-
regulated ion channel by reversible regulation of the transmem-
brane length of molecule. Although the obtained regulation
between trans and cis-isomers was relative small (transmembrane
activity decreased 0.15 from trans to cis), it was assured that
excellent light-regulated ion channel could be constructed by
further molecular optimization in future.
(b) T. Fehrentz, M. Scho¨nberger, D. Trauner, Optochemische genetik, Angew.
Chem. Int. Ed. 50 (2011) 12156–12182;
(c) M.R. Banghart, A. Mourot, D.L. Fortin, et al., Photochromic blockers of voltage-
gated potassium channels, Angew. Chem. Int. Ed. 48 (2009) 9097–9101;
(d) M. Volgraf, P. Gorostiza, R. Numano, et al., Allosteric control of an ionotropic
glutamate receptor with an optical switch, Nat. Chem. Biol. 2 (2006) 47–52.
[6] (a) A. Koc¸er, M. Walko, W. Meijberg, B.L. Feringa, A light-actuated nanovalve
derived from a channel protein, Science 309 (2005) 755–758;
´
(b) W. SzymaNski, D. Yilmaz, A. Koc¸er, B.L. Feringa, Bright ion channels and lipid
bilayers, Acc. Chem. Res. 46 (2013) 2910–2923;
(c) C. Bao, H. Jia, T. Liu, Y. Wang, W. Peng, L. Zhu, Synthesis of artificial ion
channels in bilayer membrane, Prog. Chem. 24 (2012) 1337–1345.
[7] (a) P.V. Jog, M.S. Gin, A light-gated synthetic ion channel, Org. Lett. 10 (2008)
3693–3696;
(b) P. Osman, S. Martin, D. Milojevic, C. Tansey, F. Separovic, Optical modulation
of the insertion of gramicidin into bilayer lipid membranes, Langmuir 14 (1998)
4238–4242.
266
4. Conclusion
267
268
269
270
271
272
273
274
275
276
In summary, we have demonstrated a new type of light-
regulated synthetic ion channel based on azobenzene substituted
tri (macrocycle) hydraphile 1. HPTS vesicle assay confirmed the
efficient transport of hydraphile 1 for ion across the lipid bilayers.
Photoisomerization of the azobenzene using 365 nm UV light and
450 nm visible light resulted in the attenuation of channel
transmembrane activity. Work is ongoing to create and develop-
ment of these robust synthetic gated ion channels, which would
exhibit great potential in various nanotechnology and biomechan-
ical applications.
[8] (a) V. Borisenko, D.C. Burns, Z. Zhang, G.A. Woolley, Optical switching of ion-
dipole interactions in a gramicidin channel analogue, J. Am. Chem. Soc. 122 (2000)
6364–6370;
(b) L. Lien, D.C.J. Jaikaran, Z. Zhang, G.A. Woolley, Photomodulated blocking of
gramicidin ion channels, J. Am. Chem. Soc. 118 (1996) 12222–12223.
[9] L. Husaru, R. Schulze, G. Steiner, et al., Potential analytical applications of gated
artificial ion channels, Anal. Bioanal. Chem. 382 (2005) 1882–1888.
[10] (a) A.A. Beharry, G.A. Wolley, Azobenzene photoswitches for biomolecules,
Chem. Soc. Rev. 40 (2011) 4422–4437;
(b) D.G. Flint, J.R. Kumita, O.S. Smart, G.A. Woolley, Using an azobenzene cross-
linker to either increase or decrease peptide helix content upon trans-to-cis
photoisomerization, Chem. Biol. 9 (2002) 391–397;
(c) M.L. Rahman, G. Hegde, S.M. Sarkar, M.M. Yusoff, Synthesis and photoswitch-
ing properties of azobenzene liquid crystals with a pentafluorobenzene terminal,
Chin. Chem. Lett. 25 (2014) 1611–1614.
277
Acknowledgments
[11] (a) T. Liu, C. Bao, H. Wang, et al., Light-controlled ion channels formed by
amphiphilic small molecules regulate ion conduction via cis–trans photoisome-
rization, Chem. Commun. 49 (2013) 10311–10313;
278 Q3
279
280
This work was supported by NNSFC (Nos. 51273064,
21472044), Innovation Program of Shanghai Municipal Education
Commission and Fundamental Research Funds for the Central
University.
(b) T. Liu, C. Bao, H. Wang, et al., Self-assembly of crown ether-based amphiphiles
for constructing synthetic ion channels: the relationship between structure and
transport activity, New J. Chem. 38 (2014) 3507–3513;
(c) C.L. Murray, G.W. Gokel, Spacer chain length dependence in hydraphile
channels: implications for channel position within phospholipid bilayers, J.
Supramol. Chem. 1 (2001) 23–30.
281
282
References
[12] (a) G.W. Gokel, S. Negin, Synthetic ion channels: from pores to biological appli-
cations, Acc. Chem. Res. 46 (2013) 2824–2833;
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
[1] (a) C. Brieke, F. Rohrbach, A. Gottschalk, G. Mayer, A. Heckel, Light-controlled
tools, Angew. Chem. Int. Ed. 51 (2012) 8446–8476;
(b) A. Nakano, Q. Xie, J.V. Mallen, L. Echegoyen, G.W. Gokel, Synthesis of a
membrane-insertable, sodium cation conducting channel: kinetic analysis by
dynamic 23Na NMR, J. Am. Chem. Soc. 112 (1990) 1287–1289;
(c) G.W. Gokel, Hydraphiles: design, synthesis and analysis of a family of syn-
thetic, cation-conducting channels, Chem. Commun. 1 (2000) 1–9;
(d) C.L. Murray, H. Shabany, G.W. Gokel, The central ‘relay’ unit in hydraphile
channels as a model for the water- and-ion ‘capsule’ of channel proteins, Chem.
Commun. 23 (2000) 2371–2372;
(e) M.E. Weber, P.H. Schlesinger, G.W. Gokel, Dynamic assessment of bilayer
thickness by varying phospholipid and hydraphile synthetic channel chain
lengths, J. Am. Chem. Soc. 127 (2005) 636–642;
(f) O. Murillo, I. Suzuki, E. Abel, et al., Synthetic transmembrane channels:
functional characterization using solubility calculations, transport studies, and
substituent effects, J. Am. Chem. Soc. 119 (1997) 5540–5549;
(g) W.M. Leevy, G.M. Donato, R. Ferdani, et al., Synthetic hydraphile channels of
appropriate length kill Escherichia coli, J. Am. Chem. Soc. 124 (2002) 9022–
9023;
(b) A.A. Beharry, G.A. Woolley, Azobenzene photoswitches for biomolecules,
Chem. Soc. Rev. 40 (2011) 4422–4437;
(c) D. Habault, H. Zhang, Y. Zhao, Light-triggered self-healing and shape-memory
polymers, Chem. Soc. Rev. 42 (2013) 7244–7256.
[2] (a) W. Szyman´ ski, J.M. Beierle, H.A.V. Kistemaker, W.A. Velema, B.L. Feringa,
Reversible photocontrol of biological systems by the incorporation of molecular
photoswitches, Chem. Rev. 113 (2013) 6114–6178;
(b) R. Givens, M.B. Kotala, J.I. Lee, Dynamic Studies in Biology, Wiley-VCH Verlag
GmbH & Co. KGaA, 2005, pp. 95–129;
(c) P. Gorostiza, E. Isacoff, Optical switches and triggers for the manipulation of
ion channels and pores, Mol. BioSyst. 3 (2007) 686–704.
[3] G. Nagel, D. Ollig, M. Fuhrmann, et al., Conversion of channelrhodopsin into a
light-gated chloride channel, Science 296 (2002) 2395–2398.
[4] (a) R.J. Thompson, M.F. Jackson, M.E. Olah, et al., Activation of pannexin-1
hemichannels augments aberrant bursting in the hippocampus, Science 322
(2008) 1555–1559;
(h) B.A. Smith, M.M. Daschbach, S.T. Gammon, et al., In vivo cell death mediated
by synthetic ion channels, Chem. Commun. 47 (2011) 7977–7979.
[13] C.P. Wilson, C. Boglio, L. Ma, S.L. Cockroft, S.J. Webb, Palladium(II)-mediated
assembly of biotinylated ion channels, Chem. Eur. J. 17 (2011) 3465–3473.
(b) S. Sundelacruz, M. Levin, D.L. Kaplan, Role of membrane potential in the
regulation of cell proliferation and differentiation, Stem Cell Rev. Rep. 5 (2009)
231–246.
Please cite this article in press as: R.-Y. Yang, et al., A light-regulated synthetic ion channel constructed by an azobenzene modified