Design of Cationic Conjugated Polyelectrolytes
A R T I C L E S
Chart 1. Molecular Structure of PFPBx
emitting BT sites occurs more efficiently via interchain contacts
in aggregates than that via the intrachain process within more
isolated polymer chains.18
Addition of negatively charge polyelectrolytes to PFPBx
induces complexation as a result of cooperative electrostatic
interactions.19 As illustrated in Figure 1, the local concentration
of PFPBx in these aggregates is increased, thereby shifting the
emission from blue to green. Such optical changes can be
induced with dsDNA or single-stranded DNA (ssDNA), and
the spectral features can be analyzed to determine the concentra-
tion of DNA in an unknown sample.20 The overall process
provides an alternative method to emissive intercalating dyes
for measuring [DNA] under conditions too dilute for absorbance
spectroscopy (g3.8 × 10-7 M in base pairs, bps, or 250 ng/
mL).21,22 Such information is important in a variety of applica-
tions ranging from the quantification of polymerase chain
reaction products to the evaluation of biosensors.23
essential for controlling the average distance between optical
partners and thereby the sensitivity and selectivity of the assay.
The overall process is complex, and there are substantial gaps
in our understanding, in particular the general shape, size, and
molecular organization on the resulting aggregates. Despite the
supramolecular complexity, molecular design has produced a
variety of structures for optimizing assays, which allow one to
control the color of emission,14 the ability of the main chain to
adapt to the secondary structure of biomolecules,15 the chain
dependence of the recognition event,16 and the ratio of FRET
vs photoinduced charge transfer.17
Structure-function relationship studies have shown that poly-
((9,9-bis(6′-N,N,N-trimethylammoniumbromide)hexyl)fluorene-
co-alt-1,4,-phenylene) (PFPBx in Chart 1) containing a fractional
substitution of fluorene monomers with 2,1,3-benzothiadiazole
(BT), in combination with dye-labeled PNA probes, can be used
in multicolor assays. The subscript “x” refers to the percentage
of phenylene-BT units in the main chain, while 100 - x %
corresponds to the fraction due to phenylene-fluorene segments.
One important feature of PFPBx is that its emission is
concentration dependent; blue emission occurs under dilute
conditions while green emission is observed in more concen-
trated solutions. The working hypothesis is that FRET from the
blue-emitting phenylene-fluorene segments to the green-
Using PFPB7 one obtains an upper detection limit for
[dsDNA] of 1.5 × 10-7 M base pairs (bps) and a lower detection
limit of 6.0 × 10-10 M bps. For comparison, commercially
available fluorescence methods using intercalating dyes can
detect concentrations as low as 3.8 × 10-11 M bps (25 pg/mL)
for dsDNA and 3.0 × 10-10 M in bases (100 pg/mL) for
ssDNA.24-31 The upper limit for PFPB7 is restricted by the
stoichiometric relationship between negative and positive
charges. Increasing [PFPB7] provides the appearance of the
green emission in the absence of dsDNA, and the assay becomes
less reliable. Factors that determine the lower detection limit
remain poorly understood at this time.
In this contribution we disclose the design of cationic
conjugated polyelectrolytes with optimized molecular features
that allow for the determination of [dsDNA] from 3 × 10-12 to
2 × 10-5 M. We start by providing a rationale for the choice
of structure and an analysis of the intrinsic optical properties
of these new materials as a function of experimental conditions.
We then examine perturbations in emission properties upon
complexation with dsDNA and show that the polyelectrolyte
complexation leads to changes in FRET efficiencies, optical
(9) (a) Dwight, S. J.; Gaylord, B. S.; Hong, J. W.; Bazan, G. C. J. Am. Chem.
Soc. 2004, 126, 16850. (b) An, L.; Tang, Y.; Wang, S.; Li, Y.; Zhu, D.
Macromol. Rapid Commun. 2006, 27, 993. (c) Wang, D.; Gong, X.; Heeger,
P. S.; Rininsland, F.; Bazan, G. C.; Heeger, A. J. Proc. Natl. Acad. Sci.
U.S.A. 2002, 99, 49. (d) Abe´rem, M. B.; Najari, A.; Ho, H. A.; Gravel, J.
F.; Nobert, P.; Boudreau, D.; Leclerc, M. AdV. Mater. 2006, 18, 2703. (e)
Ho, H. A.; Leclerc, M. J. Am. Chem. Soc. 2004, 126, 1384. (f) Floch, F.
L.; Ho, H. A.; Leclerc, M. Anal. Chem. 2006, 78, 4727.
(10) (a) Nilsson, K. P. R.; Herland, A.; Hammarstro¨m, P.; Ingana¨s, O.
Biochemistry 2005, 44, 3718. (b) Nilsson, K. P. R.; Hammarstro¨m, P.;
Ahlgren, F.; Herland, A.; Schnell, E. A.; Lindgren, M.; Westermark, G.
T.; Ingana¨s, O. ChemBioChem 2006, 7, 1096. (c) Pinto, M. R.; Schanze,
K. S. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 7505. (d) Kim, I. B.;
Dunkhorst, A.; Bunz, U. H. F. Langmuir 2005, 21, 7985.
(18) (a) Beljonne, D.; Pourtois, G.; Silva, C.; Hennebicq, E.; Herz, L. M.; Friend,
R. H.; Scholes, G. D.; Setayesh, S.; Mu¨llen, K.; Bre´das, J. L. Proc. Natl.
Acad. Sci. U.S.A. 2002, 99, 10982. (b) Schwartz, B. J.; Nguyen, T.-Q.;
Wu, J.; Tolbert, S. H. Synth. Met. 2001, 116, 35.
(19) (a) Self-Assembling Complexes for Gene DeliVery, From Laboratory to
Clinical Trial; Kabanov, A. V., Felgner, P. L., Seymour, L. W., Eds.; John
Wiley: Chichester, 1998. (b) Go¨ssl, I.; Shu, L.; Shu¨lter, A. D.; Rabe, J. P.
J. Am. Chem. Soc. 2002, 124, 6860. (c) Wang, Y.; Dubin, P. L.; Zhang, H.
Langmuir 2001, 17, 1670. (d) Bronich, T. K.; Nguyen, H. K.; Eidenberg,
A.; Kabanov, A. V. J. Am. Chem. Soc. 2000, 122, 8339. (e) MacKnight,
W. J.; Ponomarenko, E. A.; Tirrell, D. A. Acc. Chem. Res. 1998, 31, 781.
(20) Hong, J. W.; Henme, W. L.; Keller, G. E.; Rinke, M. T.; Bazan, G. C.
AdV. Mater. 2006, 18, 878.
(11) (a) Ho, H. A.; Boissinot, M.; Bergeron, M. G.; Corbeil, G.; Dore, K.;
Boudreau, D.; Leclerc, M. Angew. Chem., Int. Ed. 2002, 41, 1548. (b)
Gaylord, B. S.; Heeger, A. J.; Bazan, G. C. Proc. Natl. Acad. Sci. U.S.A.
2002, 99, 10954. (c) Gaylord, B. S.; Massie, M. R.; Feinstein, S. C.; Bazan,
G. C. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 34. (d) Ho, H. A.; Dore´, K.;
Boissinot, M.; Bergeron, M. G.; Tanguay, R. M.; Boudreau, D.; Leclerc,
M. J. Am. Chem. Soc. 2005, 127, 12673. (e) Baker, E. S.; Hong, J. W.;
Gaylord, B. S.; Bazan, G. C.; Bowers, M. T. J. Am. Chem. Soc. 2006, 128,
8484. (f) Xu, Q.-H.; Gaylord, B. S.; Wang, S.; Bazan, G. C.; Moses, D.;
Heeger, A. J. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 11634. (g) Gaylord,
B. S.; Heeger, A. J.; Bazan, G. C. J. Am. Chem. Soc. 2003, 125, 896. (h)
He, F.; Tang, Y.; Wang, S.; Li, Y.; Zhu, D. J. Am. Chem. Soc. 2005, 127,
12343. (i) He, F.; Tang, Y.; Yu, M.; Feng, F.; An, L.; Sun, H.; Wang, S.;
Li, Y.; Zhu, D.; Bazan, G. C. J. Am. Chem. Soc. 2006, 128, 6764.
(12) (a) Liu, B.; Baudrey, S.; Jaeger, L.; Bazan, G. C. J. Am. Chem. Soc. 2004,
126, 4076. (b) Wang, S.; Bazan, G. C. AdV. Mater. 2003, 15, 1425.
(13) (a) Fo¨rster, T. Discuss. Faraday Soc. 1959, 27, 7. (b) Lakowicz, J. R.
Principles of Fluorescence Spectroscopy, 2nd ed.; Kluwer Academic/
Plenum Publications: New York, 1999. (c) Valeur, B. Molecular Fluo-
rescence; Wiley-VCH: Weinheim, 2002.
(21) Giache`, V.; Pirami, L.; Becciolini, A. J. Biolumin. Chemilumin. 1994, 9,
229.
(22) Sambrook, J.; Fritsch, E. F.; Maniatis, T. Molecular Cloning: A Laboratory
Manual, 2nd ed.; Cold Spring Harbor: New York, 1989; Appendix E.
(23) (a) Rajeevan, M. S.; Ranamukhaarachchi, D. G.; Vernon, S. D.; Unger, E.
R. Methods 2001, 25, 443. (b) Berney, H.; West, J.; Haefele, E.; Alderman,
J.; Lane, W.; Collins, J. K. Sens. Actuators, B 2000, 68, 100.
(24) Cosa, G.; Focsaneanu, K.-S.; McLean, J. R. N.; McNamee, J. P.; Sciano,
J. C. Photochem. Photobiol. 2001, 73, 585.
(25) Schweitzer, C.; Scaiano, J. C. Phys. Chem. Chem. Phys. 2003, 5, 4911.
(26) Rye, H. S.; Dabora, J. M.; Quesada, M. A.; Mathies, R. A.; Glazer, A. N.
Anal. Biochem. 1993, 208, 144.
(27) Singer, V. L.; Jones, L. J.; Yue, S. T.; Haugland, R. P. Anal. Biochem.
1997, 249, 228.
(28) Ashley, N.; Harris, D.; Poulton, J. Exp. Cell Res. 2005, 303, 432.
(29) Gray, G. D.; Wickstrom, E. Antisense Nucleic Acid Drug DeV. 1997, 7,
133.
(30) Reyderman, L.; Stavchansky, S. J. Chromatogr., A 1996, 755, 271.
(31) Bontemps, J.; Houssier, C.; Fredericq, E. Nucleic Acids Res. 1975, 2, 971.
(14) Liu, B.; Bazan, G. C. J. Am. Chem. Soc. 2004, 126, 1942.
(15) Liu, B.; Wang, S.; Bazan, G. C.; Mikhailovsky, A. J. Am. Chem. Soc. 2003,
125, 13306.
(16) Wang, S.; Liu, B.; Gaylord, B. S.; Bazan, G. C. AdV. Funct. Mater. 2003,
13, 463.
(17) Liu, B.; Bazan, G. J. Am. Chem. Soc. 2006, 128, 1188.
9
J. AM. CHEM. SOC. VOL. 129, NO. 36, 2007 11135