Journal of the American Chemical Society
Page 8 of 10
Amphiphilic Diarylethene Assembly: Reversible Dynamic Motion. J.
Two-Photon Cycloreversion by a Near-Infrared Femtosecond Laser
Am. Chem. Soc. 2015, 137, 2722-2729.
Pulse at 1.28 μm. J. Am. Chem. Soc. 2011, 133, 2621-2625.
(36) Yamaguchi, T.; Uchida, K.; Irie, M., Photochromism of 1,2-
Bis(3-n-alkyl-1-benzothiophen-2-yl)perfluorocyclopentene
Derivatives. Mol. Cryst. Liq. Cryst. 2007, 474, 111-118.
(37) Fukaminato, T.; Hirose, T.; Doi, T.; Hazama, M.; Matsuda, K.;
Irie, M. Molecular Design Strategy toward Diarylethenes that
Photoswitch with Visible Light. J. Am. Chem. Soc. 2014, 136, 17145-
17154.
(38) Tosic, O.; Altenhöner, K.; Mattay, J. Photochromic
Dithienylethenes with Extended π-Systems. Photoch. Photobio. Sci.
2010, 9, 128-130.
(39) Tsivgoulis, G. M.; Lehn, J. Multiplexing Optical Systems:
Multicolor-Bifluorescent-Biredox Photochromic Mixtures. Adv.
Mater. 1997, 9, 627-630.
(40) Hu, F.; Cao, M.; Ma, X.; Liu, S. H.; Yin, J. Visible-Light-
Dependent Photocyclization: Design, Synthesis, and Properties of a
Cyanine-Based Dithienylethene. J. Org. Chem. 2015, 80, 7830-7835.
(41) Tang, S.; Song, F.; Lu, M.; Han, K.; Peng, X. Rational Design of
a Visible-Light Photochromic Diarylethene: A Simple Strategy by
Extending Conjugation with Electron Donating Groups. Sci. China:
Chem. 2019, 62, 451-459.
(42) Poon, C.; Lam, W. H.; Wong, H.; Yam, V. W. A Versatile
Photochromic Dithienylethene-Containing β-Diketonate Ligand: Near-
Infrared Photochromic Behavior and Photoswitchable Luminescence
Properties upon Incorporation of a Boron(III) Center. J. Am. Chem. Soc.
2010, 132, 13992-13993.
1
2
3
4
5
6
7
8
(18) Zhang, J.; Tian, H. The Endeavor of Diarylethenes: New
Structures, High Performance, and Bright Future. Adv. Opt. Mater.
2018, 6, 1701278.
(19) Irie, M.; Fukaminato, T.; Matsuda, K.; Kobatake, S.
Photochromism of Diarylethene Molecules and Crystals: Memories,
Switches, and Actuators. Chem. Rev. 2014, 114, 12174-12277.
(20) Liu, K.; Wen, Y.; Shi, T.; Li, Y.; Li, F.; Zhao, Y.; Huang, C.; Yi,
T. DNA Gated Photochromism and Fluorescent Switch in a Thiazole
Orange Modified Diarylethene. Chem. Commun. 2014, 50, 9141-9144.
(21) Fukumoto, S.; Nakashima, T.; Kawai, T. Photon-Quantitative
Reaction of a Dithiazolylarylene in Solution. Angew. Chem. Int. Ed.
2011, 50, 1565-1568.
(22) Roubinet, B.; Weber, M.; Shojaei, H.; Bates, M.; Bossi, M. L.;
Belov, V. N.; Irie, M.; Hell, S. W. Fluorescent Photoswitchable
Diarylethenes for Biolabeling and Single-Molecule Localization
Microscopies with Optical Superresolution. J. Am. Chem. Soc. 2017,
139, 6611-6620.
(23) Arai, Y.; Ito, S.; Fujita, H.; Yoneda, Y.; Kaji, T.; Takei, S.;
Kashihara, R.; Morimoto, M.; Irie, M.; Miyasaka, H., One-Colour
Control of Activation, Excitation and Deactivation of a Fluorescent
Diarylethene Derivative in Super-Resolution Microscopy. Chem.
Commun. 2017, 53, 4066-4069.
(24) Cabré, G.; Garrido-Charles, A.; Moreno, M.; Bosch, M.; Porta-
de-la-Riva, M.; Krieg, M.; Gascón-Moya, M.; Camarero, N.; Gelabert,
R.; Lluch, J. M.; Busqué, F.; Hernando, J.; Gorostiza, P.; Alibés, R.
Rationally Designed Azobenzene Photoswitches for Efficient Two-
Photon Neuronal Excitation. Nat. Commun. 2019, 10, 907.
(25) Velema, W. A.; Szymanski, W.; Feringa, B. L.
Photopharmacology: Beyond Proof of Principle. J. Am. Chem. Soc.
2014, 136, 2178-2191.
(26) Cheng, H.; Zhang, Y.; Liu, Y.; Yoon, J. Turn-On Supramolecular
Host-Guest Nanosystems as Theranostics for Cancer. Chem 2019, 5,
553-574.
(27) Hansen, M. J.; Lerch, M. M.; Szymanski, W.; Feringa, B. L.
Direct and Versatile Synthesis of Red-Shifted Azobenzenes. Angew.
Chem. Int. Ed. 2016, 55, 13514-13518.
(28) Bléger, D.; Schwarz, J.; Brouwer, A. M.; Hecht, S. o-
Fluoroazobenzenes as Readily Synthesized Photoswitches Offering
Nearly Quantitative Two-Way Isomerization with Visible Light. J. Am.
Chem. Soc. 2012, 134, 20597-20600.
(29) Zweig, J. E.; Newhouse, T. R. Isomer-Specific Hydrogen
Bonding as a Design Principle for Bidirectionally Quantitative and
Redshifted Hemithioindigo Photoswitches. J. Am. Chem. Soc. 2017,
139, 10956-10959.
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
(43) Wu, N. M.; Ng, M.; Lam, W. H.; Wong, H.; Yam, V. W.
Photochromic Heterocycle-Fused Thieno[3,2-b]phosphole Oxides as
Visible Light Switches without Sacrificing Photoswitching Efficiency.
J. Am. Chem. Soc. 2017, 139, 15142-15150.
(44) Peters, G. M.; Tovar, J. D. Pendant Photochromic Conjugated
Polymers Incorporating a Highly Functionalizable Thieno[3,4-
b]Thiophene Switching Motif. J. Am. Chem. Soc. 2019, 141, 3146-
3152.
(45) Sobczyk, L.; Chudoba, D.; Tolstoy, M. P.; Filarowski, A. Some
Brief Notes on Theoretical and Experimental Investigations of
Intramolecular Hydrogen Bonding. Molecules 2016, 21, 1657.
(46) Filarowski, A. Intramolecular Hydrogen Bonding in o-
Hydroxyaryl Schiff Bases. J. Phys. Org. Chem. 2005, 18, 686-698.
(47) Houjou, H.; Shingai, H.; Yagi, K.; Yoshikawa, I.; Araki, K.
Mutual Interference between Intramolecular Proton Transfer Sites
through the Adjoining π-Conjugated System in Schiff Bases of Double-
Headed, Fused Salicylaldehydes. J. Org. Chem. 2013, 78, 9021-9031.
(48) Kluba, M.; Lipkowski, P.; Filarowski, A. Theoretical
Investigation of Tautomeric Equilibrium in ortho-Hydroxy Phenyl
Schiff Bases. Chem. Phys. Lett. 2008, 463, 426-430.
(49) Minkin, V. I.; Tsukanov, A. V.; Dubonosov, A. D.; Bren, V. A.
Tautomeric Schiff Bases: Iono-, Solvato-, Thermo- and
Photochromism. J. Mol. Struct. 2011, 998, 179-191.
(50) Rospenk, M.; Król-Starzomska, I.; Filarowski, A.; Koll, A.
Proton Transfer and Self-Association of Sterically Modified Schiff
Bases. Chem. Phys. 2003, 287, 113-124.
(51) Ziółek, M.; Kubicki, J.; Maciejewski, A.; Naskrȩcki, R.;
Grabowska, A. Enol-Keto Tautomerism of Aromatic Photochromic
Schiff Base N,N’-Bis(Salicylidene)-p-Phenylenediamine: Ground
State Equilibrium and Excited State Deactivation Studied by
Solvatochromic Measurements on Ultrafast Time Scale. J. Chem. Phys.
2006, 124, 124518.
(52) Mukhopadhyay, M.; Banerjee, D.; Koll, A.; Filarowski, A.;
Mukherjee, S. Proton Transfer Reaction of a New Orthohydroxy Schiff
Base in Some Protic and Aprotic Solvents at Room Temperature and
77 K. Spectrochim. Acta. A. 2005, 62, 126-131.
(53) Jański, J.; Koll, A. Solvent and Substitution Influence on the
Character of Tautomers Resulting From Proton Transfer Reaction in
some Phenol Derivatives. Struct. Chem. 2004, 15, 353-361.
(54) Sharif, S.; Denisov, G. S.; Toney, M. D.; Limbach, H. NMR
Studies of Solvent-Assisted Proton Transfer in a Biologically Relevant
(30) Fredrich, S.; Göstl, R.; Herder, M.; Grubert, L.; Hecht, S.
Switching Diarylethenes Reliably in Both Directions with Visible
Light. Angew. Chem. Int. Ed. 2016, 55, 1208-1212.
(31) Dong, M.; Babalhavaeji, A.; Collins, C. V.; Jarrah, K.; Sadovski,
O.; Dai, Q.; Woolley, G. A. Near-Infrared Photoswitching of
Azobenzenes under Physiological Conditions. J. Am. Chem. Soc. 2017,
139, 13483-13486.
(32) Bléger, D.; Hecht, S. Visible-Light-Activated Molecular
Switches. Angew. Chem. Int. Ed. 2015, 54, 11338-11349.
(33) Zhang, Z.; Zhang, J.; Wu, B.; Li, X.; Chen, Y.; Huang, J.; Zhu,
L.; Tian, H. Diarylethenes with a Narrow Singlet–Triplet Energy Gap
Sensitizer:
A
Simple Strategy for Efficient Visible-Light
Photochromism. Adv. Opt. Mater. 2018, 6, 1700847.
(34) Boyer, J.; Carling, C.; Gates, B. D.; Branda, N. R. Two-Way
Photoswitching Using One Type of Near-Infrared Light, Upconverting
Nanoparticles, and Changing Only the Light Intensity. J. Am. Chem.
Soc. 2010, 132, 15766-15772.
(35) Mori, K.; Ishibashi, Y.; Matsuda, H.; Ito, S.; Nagasawa, Y.;
Nakagawa, H.; Uchida, K.; Yokojima, S.; Nakamura, S.; Irie, M.;
Miyasaka, H. One-Color Reversible Control of Photochromic
Reactions in a Diarylethene Derivative: Three-Photon Cyclization and
8
ACS Paragon Plus Environment