Biochemistry
ARTICLE
’
AUTHOR INFORMATION
(13) Osborne, T. C., Obianyo, O., Zhang, X., Cheng, X., andThompson,
P. R. (2007) Protein arginine methyltransferase 1: Positively charged
residues in substrate peptides distal to the site of methylation are important
for substrate binding and catalysis. Biochemistry 46, 13370–13381.
(14) Osborne, T., Roska, R. L., Rajski, S. R., and Thompson, P. R.
(2008) In situ generation of a bisubstrate analogue for protein arginine
methyltransferase 1. J. Am. Chem. Soc. 130, 4574–4575.
Corresponding Author
*
Department of Chemistry, The Scripps Research Institute, 130
Scripps Way, Jupiter, FL 33458. Telephone: (561) 228-2860.
Fax: (561) 228-2918. E-mail: Pthompso@scripps.edu.
Funding Sources
This work was supported in part by the University of South Carolina
Research Foundation and TSRI Scripps Florida (P.R.T.).
(15) Obianyo, O., Causey, C. P., Osborne, T. C., Jones, J. E., Lee, Y. H.,
Stallcup, M. R., and Thompson, P. R. (2010) A chloroacetamidine-based
inactivator of protein arginine methyltransferase 1: Design, synthesis, and in
vitro and in vivo evaluation. ChemBioChem 11, 1219–1223.
(16) Bicker, K. L., Obianyo, O., Rust, H. L., and Thompson, P. R.
(
2011) A combinatorial approach to characterize the substrate specifi-
’
ACKNOWLEDGMENT
city of protein arginine methyltransferase 1. Mol. BioSyst. 7, 48–51.
(17) Obianyo, O., Osborne, T. C., and Thompson, P. R. (2008)
Kinetic mechanism of protein arginine methyltransferase 1. Biochemistry
We thank Raman Parkesh for help with the pK calculations.
a
4
7, 10420–10427.
’
ABBREVIATIONS
(18) Zhang, X., Zhou, L., and Cheng, X. (2000) Crystal structure of
PRMT, protein arginine methyltransferase; SAM, S-adenosyl-
methionine; SAH, S-adenosylhomocysteine; ω-MMA, monomethy-
larginine; ADMA, asymmetrically dimethylated arginine; SDMA,
symmetrically dimethylated arginine; NOS, nitric oxide synthase;
the conserved core of protein arginine methyltransferase PRMT3.
EMBO J. 19, 3509–3519.
(19) Yue, W. W., Hassler, M., Roe, S. M., Thompson-Vale, V., andPearl,
L. H. (2007) Insights into histone code syntax from structural and
biochemical studies of CARM1 methyltransferase. EMBO J. 26, 4402–4412.
NO, nitric oxide; ERR, estrogen receptor R;E , estrogen; FAK, focal
2
(20) Troffer-Charlier, N., Cura, V., Hassenboehler, P., Moras, D., and
adhesion kinase; PI3K, phosphoinositide 3-kinase; NR, nuclear re-
ceptor; AR, androgen receptor; TRIS, tris(hydroxymethylamino-
methane); HEPES, 4-(2-hydroxyethyl)-1-piperazineethanesulfonic
acid; DTT, dithiothreitol; DMF, dimethylformamide; EDTA, (eth-
ylenedinitrilo)tetraacetic acid; TFA, trifluoroacetic acid; BSA, bovine
serum albumin; PDB, Protein Data Bank.
Cavarelli, J. (2007) Functional insights from structures of coactivator-
associated arginine methyltransferase 1 domains. EMBO J. 26, 4391–4401.
(21) Feng, Q., He, B., Jung, S. Y., Song, Y., Qin, J., Tsai, S. Y., Tsai,
M. J., and O'Malley, B. W. (2009) Biochemical control of CARM1
enzymatic activity by phosphorylation. J. Biol. Chem. 284, 36167–36174.
(22) Branscombe, T. L., Frankel, A., Lee, J. H., Cook, J. R., Yang, Z.,
Pestka, S., and Clarke, S. (2001) PRMT5 (Janus kinase-binding protein
1
) catalyzes the formation of symmetric dimethylarginine residues in
’
REFERENCES
proteins. J. Biol. Chem. 276, 32971–32976.
(
1) Bedford, M. T. (2007) Arginine methylation at a glance. J. Cell
Sci. 120, 4243–4246.
2) Bedford, M. T., and Clarke, S. G. (2009) Protein arginine
methylation in mammals: Who, what, and why. Mol. Cell 33, 1–13.
3) Bedford, M. T., and Richard, S. (2005) Arginine methylation an
emerging regulator of protein function. Mol. Cell 18, 263–272.
4) Wolf, S. S. (2009) The protein arginine methyltransferase family:
(23) Leatherbarrow, R. J. (2004) GraFit, version 5.0.11, Erathicus
Software, Staines, U.K.
(24) Fisk, J. C., Sayegh, J., Zurita-Lopez, C., Menon, S., Presnyak, V.,
Clarke, S. G., and Read, L. K. (2009) A type III protein arginine
methyltransferase from the protozoan parasite Trypanosoma brucei. J. Biol.
Chem. 284, 11590–11600.
(25) Case, D. A., Cheatham, T. E., III, Darden, T., Gohlke, H., Luo,
R., Merz, K. M., Jr., Onufriev, A., Simmerling, C., Wang, B., and Woods,
R. J. (2005) The Amber biomolecular simulation programs. J. Comput.
Chem. 26, 1668–1688.
(
(
(
An update about function, new perspectives and the physiological role in
humans. Cell. Mol. Life Sci. 66, 2109–2121.
(
5) Nicholson, T. B., Chen, T., and Richard, S. (2009) The
physiological and pathophysiological role of PRMT1-mediated protein
arginine methylation. Pharmacol. Res. 60, 466–474.
(26) Bas, D. C., Rogers, D. M., and Jensen, J. H. (2008) Very fast
prediction and rationalization of pKa values for protein-ligand com-
plexes. Proteins 73, 765–783.
(
6) Di Lorenzo, A., and Bedford, M. T. (2010) Histone arginine
methylation. FEBS Lett.XXX.
7) Tang, J., Frankel, A., Cook, R. J., Kim, S., Paik, W. K., Williams,
(27) Boehr, D. D., Thompson, P. R., and Wright, G. D. (2001)
0
(
Molecular mechanism of aminoglycoside antibiotic kinase APH(3 )-IIIa:
K. R., Clarke, S., and Herschman, H. R. (2000) PRMT1 is the
predominant type I protein arginine methyltransferase in mammalian
cells. J. Biol. Chem. 275, 7723–7730.
Roles of conserved active site residues. J. Biol. Chem. 276, 23929–23936.
(28) Knuckley, B., Bhatia, M., and Thompson, P. R. (2007) Protein
arginine deiminase 4: Evidence for a reverse protonation mechanism.
Biochemistry 46, 6578–6587.
(8) Herrmann, F., Lee, J., Bedford, M. T., and Fackelmayer, F. O.
(
(
2005) Dynamics of human protein arginine methyltransferase 1
PRMT1) in vivo. J. Biol. Chem. 280, 38005–38010.
(29) Troffer-Charlier, N., Cura, V., Hassenboehler, P., Moras, D.,
and Cavarelli, J. (2007) Expression, purification, crystallization and
preliminary crystallographic study of isolated modules of the mouse
coactivator-associated arginine methyltransferase 1. Acta Crystallogr.
F63, 330–333.
(30) Karsten, W. E., Lai, C. J., and Cook, P. F. (1995) Inverse solvent
isotope effects in the NAD-malic enzyme reaction are the result of the
2 2
viscosity difference between D O and H O: Implications for solvent
(9) Zhang, X., and Cheng, X. (2003) Structure of the predominant
protein arginine methyltransferase PRMT1 and analysis of its binding to
substrate peptides. Structure 11, 509–520.
(10) Chen, X., Niroomand, F., Liu, Z., Zankl, A., Katus, H. A., Jahn,
L., and Tiefenbacher, C. P. (2006) Expression of nitric oxide related
enzymes in coronary heart disease. Basic Res. Cardiol. 101, 346–353.
(
11) Le Romancer, M., Treilleux, I., Leconte, N., Robin-Lespinasse,
isotope effect studies. J. Am. Chem. Soc. 117, 5914–5918.
(31) Guillen Schlippe, Y. V., and Hedstrom, L. (2005) A twisted
base? The role of arginine in enzyme-catalyzed proton abstractions.
Arch. Biochem. Biophys. 433, 266–278.
Y., Sentis, S., Bouchekioua-Bouzaghou, K., Goddard, S., Gobert-Gosse,
S., and Corbo, L. (2008) Regulation of estrogen rapid signaling through
arginine methylation by PRMT1. Mol. Cell 31, 212–221.
(12) Koh, S. S., Chen, D., Lee, Y. H., and Stallcup, M. R. (2001)
Synergistic enhancement of nuclear receptor function by p160 coacti-
vators and two coactivators with protein methyltransferase activities.
J. Biol. Chem. 276, 1089–1098.
3
345
dx.doi.org/10.1021/bi102022e |Biochemistry 2011, 50, 3332–3345