Effects of Local Duplex Stability and N6mA on Mug
Chem. Res. Toxicol., Vol. 15, No. 12, 2002 1601
propylphosphorodiamidite for in situ preparation of deoxyribo-
nucleoside phosphoramidites and their use in polymer-supported
synthesis of oligodeoxyribonucleotides. Nucleic Acids Res. 14,
7391-7403.
Note Ad d ed a fter ASAP . This article posted to the
Web as an ASAP article November 20, 2002. Subse-
quently, two corrections in the text were made. The
article reposted to the Web December 16, 2002.
(25) Gait, M. J . (1984) Oligonucleotide Synthesis, A Practical Approach,
IRL Press, Oxford, U.K.
(26) Dizdaroglu, M. (1985) Application of capillary gas chromatogra-
phy-mass spectrometry to chemical characterization of radiation-
induced base damage of DNA: Implications for assessing DNA
repair processes. Anal. Biochem. 144, 593-603.
(27) Fujimoto, J ., Tran, L., and Sowers, L. C. (1997) Synthesis and
cleavage of oligodeoxynucleotides containing a 5-hydroxyuracil
residue at a defined site. Chem. Res. Toxicol. 10, 1254-1258.
(28) Hang, B., Sagi, J ., and Singer, B. (1998) Correlation between
sequence-dependent glycosylase repair and the thermal stability
of oligonucleotide duplexes containing 1,N6-ethenoadenine. J .
Biol. Chem. 273, 33406-33413.
(29) Marky, L. A., and Breslauer, K. J . (1987) Calculating thermody-
namic data for transitions of any molecularity from equilibrium
melting curves. Biopolymers 26, 1601-1620.
(30) Taylor, I., Watts, D., and Kneale, G. (1993) Substrate recognition
and selectivity in the type IC DNA modification methylase
M.EcoR124I. Nucleic Acids Res. 21, 4929-4935.
(31) Kan, N. C., Lautenberger, J . A., Edgell, M. H., and Hutchison,
C. A., III (1979) The nucleotide sequence recognized by the
Escherichia coli K12 restriction and modification enzymes. J . Mol.
Biol. 130, 191-209.
(32) Bickle, T. A. (1982) The ATP-dependent restriction endonucleases.
Nucleases. Cold Spring Harbor Laboratory Press, Plainview, NY.
(33) Sowers, L. C., Shaw, B. R., and Sedwick, W. D. (1987) Base
stacking and molecular polarizability: Effect of a methyl group
in the 5-position of pyrimidines. Biochem. Biophys. Res. Commun.
148, 790-794.
(34) Roberts, R. J ., and Cheng, X. (1998) Base flipping. Annu. Rev.
Biochem. 67, 181-198.
(35) Slupphaug, G., Mol, C. D., Kavli, B., Arvai, A. S., Krokan, H. E.,
and Tainer, J . A. (1996) A nucleotide flipping mechanism from
the structure of human uracil-DNA glycosylase bound to DNA.
Nature 384, 87-92.
(36) Stivers, J . T., Pankiewicz, K. W., and Watanabe, K. A. (1999)
Kinetic mechanism of damage site recognition and uracil flipping
by Escherichia coli uracil DNA glycosylase. Biochemistry 38, 952-
963.
(37) Kollman, P. A., Weiner, P. K. and Dearing, A. (1981) Studies of
nucleotide conformations and interactions. The relative stabilities
of double-helical B-DNA sequence isomers. Biopolymers 20, 2583-
2621.
(38) Devoe, H., and Tinoco, I., J r. (1962) The stability of helical
polynucleotides: Base contributions. J . Mol. Biol. 4, 500-517.
(39) Crothers, D. M., and Zimm, B. H. (1964) Theory of the melting
transition of synthetic polynucleotides: Evaluation of stacking
free energy. J . Mol. Biol. 9, 1-9.
(40) Petruska, J ., Sowers, L. C., and Goodman, M. F. (1986) Compari-
son of nucleotide interactions in water, proteins, and vacuum:
Model of DNA polymerase fidelity. Proc. Natl. Acad. Sci. U.S.A.
83, 1559-1562.
(41) Doktycz, M. J ., Morris, M. D., Dormady, S. J ., Beattie, K. L., and
J acobson, K. B. (1995) Optical melting of 128 octamer DNA
duplexes. Effects of base pair location and nearest neighbors on
thermal stability. J . Biol. Chem. 270, 8439-8445.
(42) Gotoh, O., and Tagashira, Y. (1981) Stabilities of nearest-neighbor
doublets in double-helical DNA determined by fitting calculated
melting profiles to observed profiles. Biopolymers 20, 1033-
1042.
(43) Wong, I., Lundquist, A. J ., Bernards, A. S., and Mosbaugh, D.
W. (2002) Presteady-state analysis of a single catalytic turnover
by Escherichia coli uracil-DNA glycosylases reveals a “Pinch-Pull-
Push” mechanism. J . Biol. Chem. 277, 19424-19432.
(44) Sagi, J ., Hang, B., and Singer, B. (1999) Sequence-dependent
repair of synthetic AP sites in 15-mer and 35-mer oligonucle-
otides: role of thermodynamic stability imposed by neighbor
bases. Chem. Res. Toxicol. 10, 917-932.
Refer en ces
(1) Ames, B. N., Shigenaga, M. K., and Hagen, T. M. (1993) Oxidants,
antioxidants, and the degenerative diseases of aging. Proc. Natl.
Acad. Sci. U.S.A. 90, 7915-7922.
(2) Mullaart, E., Lohman, P. H. M., Berends, F., and Vijg, J . (1990)
DNA damage metabolism and aging. Mutat. Res. 237, 189-210.
(3) Loeb, L. A. (1989) Endogenous carcinogenesis: Molecular oncology
into the twenty-first century - Presidential address. Cancer Res.
49, 5489-5496.
(4) Lindahl, T. (1993) Instability and decay of the primary structure
of DNA. Nature 362, 709-715.
(5) Lindahl, T., and Wood, R. D. (1999) Quality control by DNA
repair. Science 286, 1897-1905.
(6) Cleaver, J . E., Karplus, K., Kashani-Sabet, M., and Limoli, C. L.
(2001) Nucleotide excision repair “a legacy of creativity”. Mutat.
Res. 485, 23-36.
(7) Hoeijmakers, J . H. J . (2001) Genome maintenance mechanisms
for preventing cancer. Nature 411, 366-374.
(8) Thompson, L. H., and Schild, D. (2001) Homologous recombina-
tional repair of DNA ensures mammalian chromosome stability.
Mutat. Res. 477, 131-153.
(9) Seeberg, E., Eide, L., and Bjoras, M. (1995) The base excision
repair pathway. Trends Biochem. Sci. 20, 391-397.
(10) Gallinari, P., and J iricny, J . (1996) A new class of uracil-DNA
glycosylases related to human thymine-DNA glycosylase. Nature
383, 735-738.
(11) Pearl, L. H. (2000) Structure and function in the uracil-DNA
glycosylase superfamily. Mutat. Res. 460, 165-181.
(12) Barrett, T. E., Savva, R., Panayotou, G., Barlow, T., Brown, T.,
J iricny, J ., and Pearl, L. H. (1998) Crystal structure of a G:T/U
mismatch-specific DNA glycosylase: mismatch recognition by
complementary-strand interactions. Cell 92, 117-129.
(13) Barrett, T. E., Scharer, O. D., Savva, R., Brown, T., J iricny, J .,
Verdine, G. L., and Pearl, L. H. (1999) Crystal structure of a
thwarted mismatch glycosylase DNA repair complex. EMBO J .
18, 6599-6609.
(14) Saparbaev, M., and Laval, J . (1998) 3,N4-ethenocytosine, a highly
mutagenic adduct, is a primary substrate for Escherichia coli
double-stranded uracil-DNA glycosylase and human mismatch-
specific thymine DNA-glycosylase. Proc. Natl. Acad. Sci. U.S.A.
95, 8508-8513.
(15) Liu, P., Burdzy, A., and Sowers, L. C. (2002) Substrate recognition
by a family of uracil-DNA glycosylases: UNG, MUG and TDG.
Chem. Res. Toxicol. 15, 1001-1009.
(16) Sung, J . S., and Mosbaugh, D. W. (2000) Escherichia coli double-
strand uracil DNA glycosylase: involvement in uracil-mediated
DNA base excision repair and stimulation of activity by endonu-
clease IV. Biochemistry 39, 10224-10235.
(17) Marinus, M. G., and Morris, N. R. (1973) Isolation of deoxyribo-
nucleic acid methylase mutants of Escherichia coli K-12. J .
Bacteriol. 114, 1143-1150.
(18) Pukkila, P. J ., Peterson, J ., Herman, G., Modrich, P., and
Meselson, M. (1983) Effects of high levels of DNA adenine
methylation on methyl-directed mismatch repair in Escherichia
coli. Genetics 104, 571-582.
(19) Radman, M., and Wagner, R. (1984) Effects of DNA methylation
on mismatch repair, mutagenesis, and recombination in Escheri-
chia coli. Curr. Top. Microbiol. Immunol. 108, 23-28.
(20) Engel, J . D., and von Hippel, P. H. (1978) Effects of methylation
on the stability of nucleic acid conformations. Studies at the
polymer level. J . Biol. Chem. 253, 927-934.
(21) Sternglanz, H., and Bugg, C. E. (1973) Conformations of N6-
monosubstituted adenine derivatives. Crystal structure of N6-
methyladenine. Biochim. Biophys. Acta 308, 1-8.
(22) Quignard, E., Fazakerley, G. V., Teoule, R., Guy, A., and Guschl-
bauer, W. (1985) Consequences of methylation on the amino group
of adenine. A proton two-dimensional NMR study of d(GGATATCC)
and d(GGm6ATATCC). Eur. J . Biochem. 152, 99-105.
(23) Ono, A., and Ueda, T. (1987) Synthesis of decadeoxyribonucle-
otides containing N6-methyladenine, N4-methylcytosine, and
5-methylcytosine: recognition and cleavage by restriction endo-
nucleases (nucleosides and nucleotides part 74). Nucleic Acids Res.
15, 219-232.
(45) Sagi, J ., Perry, A., Hang, B., and Singer, B. (2000) Differential
destabilization of the DNA oligonucleotide double helix by a T:G
mismatch, 3,N4-ethenocytosine, 3,N4-ethanocytosine, or an 8-(hy-
droxymethyl)-3,N4-ethenocytosine adduct incorporated into the
same sequence contexts. Chem. Res. Toxicol. 13, 839-845.
(46) Biswas, T., Clos, L. J ., II, SantaLucia, J ., J r., Mitra, S., and Roy,
R. (2002) Binding of specific DNA base-pair mismatches by
N-methylpurine-DNA glycosylase and its implication in initial
damage recognition. J . Mol. Biol. 320, 503-513.
(24) Nielsen, J ., Taagaard, M., Marugg, J . E., van Boom, J . H., and
Dahl, O. (1986) Application of 2-cyanoethyl-N,N,N′,N′-tetraiso-
TX020062Y