ORGANIC
LETTERS
2004
Vol. 6, No. 10
1557-1560
Highly Selective Colorimetric Naked-Eye
Cu(II) Detection Using an Azobenzene
Chemosensor
Thorfinnur Gunnlaugsson,* Joseph P. Leonard, and Niamh S. Murray
Department of Chemistry, Trinity College Dublin, Dublin 2, Ireland
Received January 16, 2004
ABSTRACT
Colorimetric azobenzene based chemosensors 1 and 2 were designed for detection of transition-metal ions such as Cu(II) under physiological
pH conditions. The internal charge transfer (ICT) sensors are highly colored, absorbing in the green. For 1, the Cu(II) recognition gives rise
to red-to-yellow color changes that are visible to the naked-eye and reversible upon addition of EDTA, whereas for 2, which lacks the aromatic
o-methoxy chelating group, no such changes were observed.
The recognition of ions and molecules is an essential part
of supramolecular chemistry.1 Over the years, many excellent
examples of luminescent-based devices, such as chemo-
sensors for various analytes, have been prepared and studied
for application in physiology and medical diagnostics.1-3
Such devices can give rise to real time, noninvasive, and
on-line monitoring in vitro or in vivo. We are interested in
this field and have developed fluorescent4 and lanthanide
luminescent Eu(II) and Tb(III) cyclen complexes as chemo-
sensors,5 switches,6 and logic gate mimics.7 Recently, we
have also focused our efforts on developing novel colori-
metric sensors for ions,8 nucleic acids,9 and oligonucleotides,9
where the aim is to develop simple-to-use, naked-eye
diagnostic tools (such as dipsticks), for the recognition of
essential electrolytes and molecules in serum for critical care
analysis.10 Herein we describe the synthesis and the spec-
(4) (a) Gunnlaugsson, T.; Kruger, P. E.; Lee, T. C.; Parkesh,R.; Pfeffer,
F. M.; Hussey, M. G. Tetrahedron Lett. 2003, 44, 6575. (b) Gunnlaugsson,
T.; Davis, A. P.; Glynn, M. Org. Lett. 2002, 4, 2449. (c) Gunnlaugsson,
T.; Bichell, B.; Nolan, C. Tetrahedron Lett. 2002, 43, 4989. (d) Gunnlaugs-
son, T.; Davis, A. P.; Glynn, M. Chem. Commun. 2001, 2556.
(5) (a) Gunnlaugsson, T.; Harte, A. J.; Leonard, J. P.; Senechal, K. J.
Am. Chem. Soc. 2003, 125, 12062. (b) Gunnlaugsson, T.; Harte, A. J.;
Leonard, J. P.; Nieuwenhuyzen, M. Supramol. Chem. 2003, 15, 505. (c)
Gunnlaugsson, T.; Harte, A. J.; Leonard, J. P.; Nieuwenhuyzen, M. Chem.
Commun. 2002, 2134.
(6) (a) Gunnlaugsson, T.; Leonard, J. P. Chem. Commun. 2003, 2424.
(b) Gunnlaugsson, T.; MacDo´naill, D. A.; Parker, D. Chem. Commun. 2000,
93. (c) Gunnlaugsson, T. Tetrahedron Lett. 2001, 42, 8901.
(7) Gunnlaugsson, T.; MacDo´naill, D. A.; Parker, D. J. Am. Chem. Soc.
2001, 123, 12866.
(8) (a) Gunnlaugsson, T.; Leonard, J. P. J. Chem. Soc., Perkin Trans. 2
2002, 1980. (b) Gunnlaugsson, T.; Nieuwenhuyzen, M.; Richard L.; Thoss,
V. J. Chem. Soc., Perkin Trans. 2 2002, 141. (c) Gunnlaugsson, T.;
Nieuwenhuyzen, M.; Richard L.; Thoss, V. Tetrahedron Lett. 2001, 42,
4725.
(9) Gunnlaugsson, T.; Kelly, J. M.; Nieuwenhuyzen, M.; O’Brien, A.
M. K. Tetrahedron Lett. 2003, 44, 8571.
(1) (a) de Silva, A. P.; McCaughan, B.; McKinney, B. O. F.; Querol,
M. Dalton Trans. 2003, 1902. (b) Anslyn, E. V. Angew. Chem., Int. Ed.
2001, 40, 3119. (c) Amendola, V.; Fabbrizzi, L.; Mangano, C.; Pallavicini,
P. Acc. Chem. Res. 2001, 34, 488. (d) Fabbrizzi, L.; Licchelli, M.;
Pallavicini, P. Acc. Chem. Res. 1999, 32, 846. (e) Czarnik, A. W. Acc.
Chem. Res. 1994, 27, 302.
(2) (a) de Silva, A. P.; Fox, D. B.; Huxley, A. J. M.; Moody, T. S. Coord.
Chem. ReV. 2000, 205, 41. (b) de Silva, A. P.; Gunaratne, H. Q. N.;
Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.;
Rice, T. E. Chem. ReV. 1997, 97, 1515.
(3) (a) Spichiger-Keller, U. S. Chemical Sensors and Biosensors for
Medical and Biological Applications; Wiley-VCH: Weinheim; Germany,
1998. (b) Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecular
Recognition; American Chemical Society: Washington, DC, 1993.
10.1021/ol0498951 CCC: $27.50 © 2004 American Chemical Society
Published on Web 04/20/2004