1 (a) K. Muller, C. Faeh and F. Diederich, Science, 2007, 317, 1881;
¨
(b) P. Jeschke, ChemBioChem, 2004, 5, 570; (c) H.-J.
Bohm, D. Banner, S. Bendels, M. Kansy, B. Kuhn, K. Muller,
¨
¨
U. Obst-Sander and M. Stahl, ChemBioChem, 2004, 5, 637;
(d) K. Mikami, Y. Itoh and M. Yamanaka, Chem. Rev., 2004,
104, 1; (e) F. M. D. Ismail, J. Fluorine Chem., 2002, 118, 27.
2 (a) P. T. Nyffeler, S. G. Duron, M. D. Burkart, S. P. Vincent and
C.-H. Wong, Angew. Chem., Int. Ed., 2005, 44, 192; (b) D. Cahard,
X. Xu, S. Couve-Bonnaire and X. Pannecoucke, Chem. Soc. Rev.,
2010, 39, 558; (c) S. Lectard, Y. Hamashima and M. Sodeoka, Adv.
Synth. Catal., 2010, 352, 2708; (d) P. Kwiatkowski, T. D. Beeson,
J. C. Conrad and D. W. C. MacMillan, J. Am. Chem. Soc., 2011,
133, 1738.
3 G. Verniest, E. Van Hende, R. Surmont and N. De Kimpe,
Org. Lett., 2006, 8, 4767.
4 For reviews, see: (a) S. D. Taylor, C. C. Kotoris and G. Hum,
Tetrahedron, 1999, 55, 12431; (b) F. A. Davis and P. V. N. Kasu,
Org. Prep. Proced. Int., 1999, 31, 125; (c) J. A. Wilkinson, Chem.
Rev., 1992, 92, 505.
Scheme 2 Deuterium labelling studies.
5 (a) G. Stavber and S. Stavber, Adv. Synth. Catal., 2010, 352, 2838;
(b) G. Stavber, M. Zupan and S. Stavber, Synlett, 2009, 589;
(c) S. Stavber, M. Jereb and M. Zupan, Chem. Commun., 2000,
1323.
6 For a combined Ir-catalysed isomerisation of primary allylic
alcohols and enamine-catalysed fluorination, see: A. Quintard,
A. Alexakis and C. Mazet, Angew. Chem., Int. Ed., 2011, 50, 2354.
7 For aromatic electrophilic fluorinations, see: T. W. Lyons and
M. S. Sanford, Chem. Rev., 2010, 110, 1147.
8 Enones as latent enolates: (a) H.-Y. Jang and M. J. Krische, Acc.
Chem. Res., 2004, 37, 653; (b) M. Blackwell, D. J. Morrison and
W. E. Piers, Tetrahedron, 2002, 58, 8247, and references therein.
9 W. Zhang and J. Hu, Adv. Synth. Catal., 2010, 352, 2799.
10 (a) W. Wang, J. Jasinski, G. B. Hammond and B. Xu, Angew.
Chem., Int. Ed., 2010, 49, 7247; (b) T. de Haro and C. Nevado,
Adv. Synth. Catal., 2010, 352, 2767.
Scheme 3 Proposed catalytic cycle.
a Z1-mode through the oxygen atom (IIa) or through the
methylenic carbon (IIc), or in a Z3-mode as an oxaallyl
(IIb).15b,19 In step (iii), the C–F bond is formed upon reaction
with the electrophilic SelectF. Step (iii) can occur directly
from II, or via formation of the free enol.y
11 a-Fluoroketones can also be prepared by fluorination of silyl enol
´
ethers: E. Be
J.-F. Paquin, J. Am. Chem. Soc., 2007, 129, 1034.
12 For reviews see: (a) R. Uma, C. Crevisy and R. Gree, Chem. Rev.,
´
´
langer, K. Cantin, O. Messe, M. Tremblay and
´
2003, 103, 27; (b) R. C. van der Drift, E. Bouwman and E. Drent,
J. Organomet. Chem., 2002, 650, 1; (c) V. Cadierno, P. Crochet and
J. Gimeno, Synlett, 2008, 1105.
In conclusion, we have shown that a-fluorinated ketones
can be prepared as single constitutional isomers by combining
a tandem iridium-catalysed isomerisation of allylic alcohols
with an electrophilic fluorination. The choice of the Ir complex
was essential to successfully combine both steps. The reaction
is easy to perform and is run under an atmosphere of air. To
the best of our knowledge, this is the first report on the use of
iridium catalysts to form C–F bonds,6 and it is also the first
example on the construction of a C–heteroatom bond in
the transition metal-catalysed coupled isomerisation/bond-
forming reactions from allylic alcohols. The reaction works
for substrates with different degrees of substitution and C–F
bonds on a tetrasubstituted C can also be formed. We are
currently investigating the participation of the Ir center in the
C–F bond formation, and whether Ir–F species are involved in
the mechanism.
´
13 V. Cadierno, S. E. Garcı
and J. A. Sordo, J. Am. Chem. Soc., 2006, 128, 1360.
14 (a) N. Ahlsten and B. Martın-Matute, Adv. Synth. Catal., 2009,
351, 2657; (b) A. Bartoszewicz, M. Livendahl and B. Martın-
Matute, Chem.–Eur. J., 2008, 14, 10547.
15 (a) A. Mizuno, H. Kusama and N. Iwasawa, Chem.–Eur. J., 2010,
16, 8248; (b) D. Cuperly, J. Petrignet, C. Crevisy and R. Gree,
´
a-Garrido, J. Gimeno, A. Varela-Alvarez
´
´
´
´
Chem.–Eur. J., 2006, 12, 3261; (c) X.-F. Yang, M. Wang,
R. S. Varma and C.-J. Li, J. Mol. Catal. A: Chem., 2004, 214, 147.
16 (a) R. Uma, M. K. Davies, C. Cre
Chem., 2001, 3141; (b) N. Ahlsten, H. Lundberg and B. Martı
Matute, Green Chem., 2010, 12, 1628; (c) B. Martın-Matute,
K. Bogar, M. Edin, F. B. Kaynak and J.-E. Backvall,
´
visy and R. Gre
´
e, Eur. J. Org.
´
n-
´
´
¨
Chem.–Eur. J., 2005, 11, 5832; (d) B. M. Trost and
R. J. Kulawiec, J. Am. Chem. Soc., 1993, 115, 2027.
17 Similar reactivity has been observed with Fe: (a) C. Cre
M. Wietrich, V. Le Boulaire, R. Uma and R. Gree, Tetrahedron
Lett., 2001, 42, 395; (b) V. Branchadell, C. Crevisy and R. Gree,
Chem.–Eur. J., 2004, 10, 5795.
18 For an alternative allylic alcohol isomerisation mechanism catalysed
by iridium hydrides, see: (a) L. Mantilli, D. Gerard, S. Torche,
´
visy,
´
´
´
Financial support from the Swedish Research council
(vetenskapsradet), the Knut and Alice Wallenberg Founda-
tion and the Berzelii center EXSELENT is gratefully
acknowledged.
´
C. Besnard and C. Mazet, Angew. Chem., Int. Ed., 2009, 48, 5143;
(b) L. Mantilli and C. Mazet, Tetrahedron Lett., 2009, 50, 4141.
19 J. F. Hartwig, R. G. Bergman and R. A. Andersen, Organometallics,
1991, 10, 3326.
20 For metal-catalysed C–F bond formation using fluoride, see:
(a) T. Wu, G. Yin and G. Liu, J. Am. Chem. Soc., 2009,
131, 16354; (b) C. Hollingworth, A. Hazari, M. N. Hopkinson,
M. Tredwell, E. Benedetto, M. Huiban, A. D. Gee, J. M. Brown
and V. Gouverneur, Angew. Chem., Int. Ed., 2011, 50, 2613.
Notes and references
z We have confirmed that 1f-d1 and 1i convert at similar rates.
y In a control experiment using KF (1 equiv.) instead of SelectF, we
ruled out the formation of the C–F bond via nucleophilic attack of
fluoride to the enolate intermediate II.20
c
This journal is The Royal Society of Chemistry 2011
Chem. Commun., 2011, 47, 8331–8333 8333