Chemistry Letters Vol.35, No.4 (2006)
465
Table 2.
Ph
Ph
H
H
H
H
O
O
dppm
conditions
4
O
O
O
H
Co2(CO)4
dppm
toluene
H
1
0 min
100 °C
7
6
dppm
equiv.)
1.5 open air
1.5 air injected by syringe
Entry
Conditions
Time Yield
(
1
2
3
4
5
5 h 21%
15 h 47%
8 h 55%
3 h 45%
15
15
15
open air
O2
sealed (non oxygen condition) 24 h
0%a
adppm complex 7 was recovered in quantitative yield.
Figure 1. Possible 3D structure of 7.
in moderate yields, which would widely provide a new method
for organic synthesis.
Table 3.
dppm
References
1
Entry
1
Substrates
Products
1
00°C, air
a) M. Saha, B. Bagby, K. M. Nicholas, Tetrahedron Lett.
986, 27, 915. b) P. J. Harrington, Transition Metals in Total
1
Co2(CO)4dppm
O
Synthesis, John Wiley & Sons, 1990, pp. 241–301. c) T. F.
Jamison, S. Shambayati, W. E. Crowe, S. L. Schreiber, J.
Am. Chem. Soc. 1997, 119, 4353. d) C. Mukai, O. Kataoka,
M. Hanaoka, J. Org. Chem. 1995, 60, 5910.
OBz
Ph
8
OBz
Ph
9 32%
Ph
H
H
H
H
H
H
H
O
O
H
H
H
O
O
2
a) K. M. Nicholas, R. Pettit, Tetrahedron Lett. 1971, 12, 3475.
b) D. Seyferth, M. O. Nestle, A. T. Wehman, J. Am. Chem.
Soc. 1975, 97, 7417.
2
3
4
7
O
O
Co2(CO)4dppm
O
H
O
2
3
1
0
4
7% (2 : 3 = 3 : 1)
3
4
5
a) R. E. Connor, K. M. Nicholas, J. Organomet. Chem. 1977,
125, C45. b) K. M. Nicholas, Acc. Chem. Res. 1987, 20, 207.
I. U. Khand, G. R. Knox, P. L. Pauson, W. E. Watts, M. I.
Foreman, J. Chem. Soc., Perkin Trans. 1 1973, 977.
a) P. Magnus, D. P. Becker, J. Chem. Soc., Chem. Commun.
H
H
H
H
H
O
8
Ph
O
Ph
O
Ph
O
O
O
O
Co2(CO)4dppm
H
H
O
1
1
12 23%
13 10%
1985, 640. b) S. L. Schreiber, T. Sammakia, W. E. Crowe,
H
OTIPS
Me
O
H
OTIPS
Me H
J. Am. Chem. Soc. 1986, 108, 3128. c) T. Sugihara, H. Ban,
M. Yamaguchi, J. Organomet. Chem. 1998, 554, 163;
NaSMe: D. Scott Davis, S. C. Shadinger, Tetrahedron Lett.
1999, 40, 7749.
H
H
H
O
O
O
Me
H
H
D'
E
O
O
Me
D'
E
H
O
F
O
H
H
AcO
O
F
H
H
AcO
H
H
H
Co2(CO)4dppm
1
4
15 70%
6
7
For the other decomplexation methods, see: a) M. J.
Schottelius, P. Chen, Helv. Chim. Acta 1998, 81, 2341. b) T.
Sugihara, Y. Okada, M. Yamaguchi, M. Nishizawa, Synlett
oxygen condition gave the ketone 6 rapidly in almost the same
yield. Under non-oxygen condition (Entry 5), on the other hand,
no ketone was obtained, instead dppm complex 7 was recovered
in quantitative yield.
In the Table 3 are depicted some examples of the conversion
of cyclic or acyclic cobalt complex into the corresponding
ketones under optimized condition. Contrary to the result of
Eq 1, treatment of 1 with dppm gave the regioisomer 2 as the
major product (Entry 2).
A hypothetical mechanism of this selectivity with cyclic
cobalt complex may be as follows: Opposite side of alkyl
side chain is less hindered, so that dppm was exchanged for
two carbon monoxide in the less hindered side as shown in
Figure 1. Finally, molecular oxygen attack cobalt atom from less
hindered side opposite to dppm, and consequently, the oxygen
atom is shifted toward this carbon to give the ketone.
Thus, we found some ligand-exchanged cobalt complexes
exposed to air under heating to give the corresponding ketone
1999, 768.
a) G. B. Jones, R. S. Huber, J. E. Mathews, J. Chem. Soc.,
Chem. Commun. 1995, 1791. b) G. B. Jones, J. M. Wright,
T. M. Rush, G. W. Plourde, II, T. F. Kelton, J. E. Mathews,
R. S. Huber, J. P. Davidson, J. Org. Chem. 1997, 62, 9379.
T. Nakamura, T. Matsui, K. Tanino, I. Kuwajima, J. Org.
Chem. 1997, 62, 3032.
a) S. Hosokawa, M. Isobe, Tetrahedron Lett. 1998, 39, 2609.
b) S. Takai, P. Ploypradith, A. Hamajima, K. Kira, M. Isobe,
Synlett 2002, 588. c) S. Tojo, M. Isobe, Tetrahedron Lett.
2005, 46, 381.
8
9
10 S. Takai, N. Sawada, M. Isobe, J. Org. Chem. 2003, 68, 3225.
11 a) L. S. Chia, W. R. Cullen, M. Franklin, A. R. Manning,
Inorg. Chem. 1975, 14, 2521. b) P. H. Bird, A. R. Fraser,
D. N. Hall, Inorg. Chem. 1977, 16, 1923. c) V. Derdau, S.
Laschat, I. Dix, P. G. Jones, Organometallics 1999, 18,
3859. d) N. Iwasawa, H. Satoh, J. Am. Chem. Soc. 1999,
121, 7951.