Welcome to LookChem.com Sign In|Join Free

CAS

  • or

12672-70-7

Post Buying Request

12672-70-7 Suppliers

Recommended suppliersmore

  • Product
  • FOB Price
  • Min.Order
  • Supply Ability
  • Supplier
  • Contact Supplier
  • Indium(III) chloride hydrate; Indium trichloride anhydrous; IndiumchlorideanhydrousPURATREM; Indium(III) chloride; Indium trichloride; trichloroindium hydrate.99%

    Cas No: 12672-70-7

  • No Data

  • 1 Metric Ton

  • 1 Metric Ton/Day

  • Henan Kanbei Chemical Co.,LTD
  • Contact Supplier

12672-70-7 Usage

General Description

Indium trichloride (InCl3) is a white, odorless, and highly deliquescent powder. Its particles are flake or plate-shaped and highly soluble in water and mineral acids. Indium trichloride is used as a starting compound for the synthesis of other inorganic and organic indium compounds, for example TMI (tri-methyl indium), which is the most widely used metal-organic precursor for indium. Indium trichloride is also used as an additive to alkaline batteries to reduce outgassing and improve operational efficiency of the battery when under electrical load. Indium trichloride is available as an anhydrous powder and as a solution up to its solubility limit. Used in a wide range of applications, including LEDs and lighting and the semiconductor component manufacturing, indium trichloride is a versatile compound needed at a myriad of industries.

Check Digit Verification of cas no

The CAS Registry Mumber 12672-70-7 includes 8 digits separated into 3 groups by hyphens. The first part of the number,starting from the left, has 5 digits, 1,2,6,7 and 2 respectively; the second part has 2 digits, 7 and 0 respectively.
Calculate Digit Verification of CAS Registry Number 12672-70:
(7*1)+(6*2)+(5*6)+(4*7)+(3*2)+(2*7)+(1*0)=97
97 % 10 = 7
So 12672-70-7 is a valid CAS Registry Number.
InChI:InChI=1/3ClH.In.H2O/h3*1H;;1H2/q;;;+3;/p-3

12672-70-7SDS

SAFETY DATA SHEETS

According to Globally Harmonized System of Classification and Labelling of Chemicals (GHS) - Sixth revised edition

Version: 1.0

Creation Date: Aug 19, 2017

Revision Date: Aug 19, 2017

1.Identification

1.1 GHS Product identifier

Product name Indium trichloride

1.2 Other means of identification

Product number -
Other names -

1.3 Recommended use of the chemical and restrictions on use

Identified uses For industry use only.
Uses advised against no data available

1.4 Supplier's details

1.5 Emergency phone number

Emergency phone number -
Service hours Monday to Friday, 9am-5pm (Standard time zone: UTC/GMT +8 hours).

More Details:12672-70-7 SDS

12672-70-7Relevant articles and documents

Mass-spectrometric study of (indium + chlorine)(g). Enthalpies of formation of InCl(g), In2Cl2(g), In2Cl4(g), InCl3(g), and In2Cl6(g)

Defoort, F.,Chatillon, C.,Bernard, C.

, p. 1443 - 1456 (1988)

The gaseous phase in equilibrium with InCl(s or l), InCl2(s or l), or InCl3(s) was analysed by the Knudsen-cell mass-spectrometric method.InCl3(g) and In2Cl6(g) are the main species vaporizing from InCl3(s); InCl(g), In2Cl2(g), In2Cl4(g), and InCl3(g) from InCl(s or l); and In2Cl4(g), InCl3(g), InCl(g), In2Cl6(g), and In2Cl2(g) from InCl2(s).The gas-phase analysis was performed by studying the ionization-efficiency curves and ionic-intensity ratios as a function of the temperature of vaporization and chemical composition in (indium + chlorine) for every InxCly+ ion (x = 1, 2 and y = 0 to 5).Enthalpies of formation were deduced from vaporization and gas-phase equilibria: ΔfH0m(InCl3, g, 298.15 K) = -(375.7 +/- 5.0) kJ * mol-1, ΔfH0m(In2Cl6, g, 298.15 K) = -(883.7 +/- 10.0) kJ * mol-1, ΔfH0m(InCl, g, 298.15 K) = -(68.2 +/- 4.6) kJ * mol-1, ΔfH0m(In2Cl4, g, 298.15 K) = -(573.2 +/- 12.6= kJ * mol-1.A lower bound was calculated for InCl2(g): ΔfH0m(InCl2, g, 298.15 K) >/= -201 kJ * mol-1.

Fourier-transform microwave spectroscopy of InF, InCl, and InBr, prepared using laser ablation

Hensel, Kristine D.,Gerry, Michael C. L.

, p. 1053 - 1059 (1997)

High-resolution rotational spectra of InF, InCl, and InBr have been measured with a pulsed jet cavity Fourier-transform microwave spectrometer. Samples were prepared by vaporizing In with a pulsed Nd:YAG laser, and reacting the vapour with a precursor gas entrained in the Ne backing gas of the jet. Precise rotational and nuclear quadrupole coupling constants have been obtained for all these molecules, along with the first nuclear spin-rotation constants of InCl and InBr. The hyperfine coupling constants are discussed in terms of the electronic structures of the molecules.

Chemical vapor transport for the control of composition of low-volatile solids: II. the composition control of indium sulfides: Technique of the charge dilution

Zavrazhnov,Naumov,Pervov,Riazhskikh

, p. 96 - 102 (2012)

Considering chalcogenide transport processes with a participation of indium and indium sulfides in the closed system it was found that non-isothermal conditions are insufficient for a noticeable reversible indium transfer. The main reason for this fact was considered as a deficiency of indium halides with a high oxidation degree of indium which are in the equilibrium in the vapor with condensed indium or its lower sulfides. To provide chemical transport that is impossible in the usual experimental conditions a new way was proposed and applied implying dilution of a charge (source or getter of indium) with inactive diluent. One of the probable diluents is gold. The probability of reversible and selective chemical transport was proved for indium in the system indium sulfides - vapor of In chlorides - (Au-In) charge . Conditions for performing the non-destructive composition control of indium sulfides in the non-destructive chemical transport were determined.

Hoeft, J.,Nair, K. P. R.

, p. 273 - 277 (1989)

Selective chemical vapor transport as a means of varying the composition of nonstoichiometric indium sulfides

Zavrazhnov,Naumov,Sergeeva,Sidei

, p. 1167 - 1178 (2007)

Investigation of halide vapor transport with the participation of indium and indium sulfides in a closed system indicates that applying a temperature gradient is insufficient for quantitative spontaneous indium transfer from the lower indium sulfides or for the transport of elemental indium. A major reason for this is that the vapor phase over indium and its lower sulfides is dominated by monohalides. Impossible under conventional experimental conditions, chemical vapor transport can be achieved by diluting indium with an inert substance, e.g., gold. Our results indicate that the vapor transport of indium is possible in systems of the form indium sulfide-indium chloride vapor-charge (Au-In) and that chloride vapor transport can be used to nondestructively control the composition of indium sulfides. The transport process is shown to be selective and reversible. Conditions are determined for nondestructive chemical transport control over the composition of indium sulfides.

N,N′-Dialkyldithiocarbamate chelates of indium(III): Alternative synthetic routes and thermodynamics characterization

Oliveira, Marcelo M.,Pessoa, Giuliana M.,Carvalho, Ludmilla C.,Peppe, Clovis,Souza, Antonio G.,Airoldi, Claudio

, p. 223 - 230 (2008/10/09)

Alternative synthetic routes to prepare N,N′-dialkyldithiocarbamate complexes of indium(III), In(S2CNR2)3 (R = CH3, C2H5, n-C3H7, i-C3H7, n-C4H9 and i-C4H9) from the metallic element and from indium monohalides, InX(X = Cl, Br and I) were established. The proposed mechanism of reaction involving InX considering a ligand redistribution reaction of XIn(S2C-NR2)2 initially produced, which could be derived from the insertion of InX into sulfur-sulfur bond of the tetralkylthiuram disulfide. The thermal decomposition of the In(S2CNR2)3 (R = CH3, C2H5, n-C3H7, i-C3H7, n-C4H9 and i-C4H9) compounds was investigated by the thermogravimetric technique, where two pathways were detected, depending on the dialkyldithiocarbamato ligand. The first step leads to indium metal, or alternatively In2S3, as the final residue for R = C2H5, n-C3H7, i-C4H9 and for R = CH3, i-C3H7, n-C4H9, respectively. The corresponding standard molar enthalpies of sublimation of all compounds were determined by means of differential scanning calorimetry and methods of estimation.

Post a RFQ

Enter 15 to 2000 letters.Word count: 0 letters

Attach files(File Format: Jpeg, Jpg, Gif, Png, PDF, PPT, Zip, Rar,Word or Excel Maximum File Size: 3MB)

1

What can I do for you?
Get Best Price

Get Best Price for 12672-70-7